2nd International ICST Conference on Robot Communication and Coordination

Research Article

Adaptive Signal Strength Prediction based on Radio Propagation Models for improving Multi-Robot Navigation Strategies

Download545 downloads
  • @INPROCEEDINGS{10.4108/ICST.ROBOCOMM2009.5816,
        author={Bernd Bruggemann and Alexander Tiderko and Markus Stilkerieg},
        title={Adaptive Signal Strength Prediction based on Radio Propagation Models for improving Multi-Robot Navigation Strategies},
        proceedings={2nd International ICST Conference on Robot Communication and Coordination},
        proceedings_a={ROBOCOMM},
        year={2009},
        month={5},
        keywords={},
        doi={10.4108/ICST.ROBOCOMM2009.5816}
    }
    
  • Bernd Bruggemann
    Alexander Tiderko
    Markus Stilkerieg
    Year: 2009
    Adaptive Signal Strength Prediction based on Radio Propagation Models for improving Multi-Robot Navigation Strategies
    ROBOCOMM
    ICST
    DOI: 10.4108/ICST.ROBOCOMM2009.5816
Bernd Bruggemann1,*, Alexander Tiderko1,*, Markus Stilkerieg1,*
  • 1: FKIE FGAN Neuenahrer Strasse 20 D - 53343 Wachtberg
*Contact email: brueggemann@fgan.de, tiderko@fgan.de, stilkerieg@fgan.de

Abstract

Multi-robot systems, i.e. groups of mobile robots which carry out complex tasks cooperatively, are becoming increasingly important in robotics research. For many applications, like exploration or search and rescue missions, multi-robot systems have great advantages over single robot solutions. Besides their ability to fulfill missions faster, multi-robot systems offer improved fault tolerance and the opportunity to combine a large number of relatively cheap robotic systems with complementary capabilities. For the successful deployment of a multi-robot system, reliable wireless communication plays an important role. Especially if an operator is in the loop, the ability to communicate to every robot at any time can be vital. This article presents a technique to predict the expected signal strength of the wireless communication between mobile robots, based on parametric models of radio wave propagation. The predictor allows to take information about the expected future communication quality into account during mission planning and helps to increase the robustness of navigation strategies for multi-robot systems with respect to communication-loss this way. The presented signal strength predictor adjusts itself on-line to different operation environments and robotic systems being used.