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Abstract— Multi-robot systems, i.e. groups of mobile robots
which carry out complex tasks cooperatively, are becoming
increasingly important in robotics research. For many applica-
tions, like exploration or search and rescue missions, multi-robot
systems have great advantages over single robot solutions. Besides
their ability to fulfill missions faster, multi-robot systems offer
improved fault tolerance and the opportunity to combine a large
number of relatively cheap robotic systems with complementary
capabilities. For the successful deployment of a multi-robot
system, reliable wireless communication plays an important role.
Especially if an operator is in the loop, the ability to communicate
to every robot at any time can be vital. This article presents a
technique to predict the expected signal strength of the wireless
communication between mobile robots, based on parametric
models of radio wave propagation. The predictor allows to take
information about the expected future communication quality
into account during mission planning and helps to increase the
robustness of navigation strategies for multi-robot systems with
respect to communication-loss this way. The presented signal
strength predictor adjusts itself on-line to different operation
environments and robotic systems being used.

I. INTRODUCTION

In contrast to a collection of individual robots, which
solve a problem independently, a multi-robot system gains
its advantages from the cooperation of its units. For this
reason, a coordinated multi-robot system can reach goals much
more efficiently and faster than a single robot or several non-
cooperating robots. However, to coordinate themselves, the
individual robots of the system need to communicate. Usually,
wireless communication is used for this purpose. Because
common wireless communication techniques like IEEE802.11
have a rather limited communication range, it is crucial that the
ability to communicate is always ensured during the operation
of the multi-robot system. To achieve this goal, we are working
on extending navigation strategies for multi-robot systems
to take the limitations of the communication system into
account. As one step into this direction, we present a signal
strength predictor in this article that allows to predict how the
connectivity between a sender and a receiver will change while
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the communication partners move through the environment.

Within our robot framework we use an ad-hoc network
protocol (see [1]) for the communication between the robots.
This protocol allows for multi-hop communication and it is,
therefore, unnecessary that every robot has a direct connection
to every other robot. However, such a mobile multi-hop
network also causes some problems. If one node is moved
to a place where it looses connection, this may not only
cause this robot to disappear from the network, but the whole
network may split up and several robots may no longer have
contact to each other. To prevent such failures, the robots’
actions need to be planned in such a way, that they stay
within a single connected component at all times. For a multi-
robot path planning which takes this communication constraint
into account, advance knowledge of the signal strength in the
environment is extremely useful. Therefore, we designed a
signal strength predictor that is able to adjust itself to different
environments and robot hardware, and which can also be
adapted on-line.

This article is organized as follows: First we present some
related works in section II. Section III introduces the radio
propagation model we use for signal strength prediction.
Section IV then explains how good parameter sets for this
propagation model can be estimated from data collected by
the robots. The problems and constraints we observed while
taking real world data to evaluate the predictor. are described
in section V. The evaluation of the predictor itself follows
in section VI. We describe some applications which can be
enhanced with the signal strength predictor in section VII and
conclude in section VIIL

II. RELATED WORK

Navigation strategies for robot systems which take the
network connectivity within the system into account are not a
novel idea. Several different approaches have been described
to achieve this goal. Hoa G. Nguyen et al. [2], for example,
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introduce a solution to maintaining the communication link be-
tween a mobile robot and its control station with autonomous
mobile relay nodes. They use a reactive control approach that
monitors the signal strength all the time. If the signal strength
droped below a certain threshold, one of the mobile relays
is left at that place to ensure the connection. In [3], Basu
et al. present an approach which uses UAVs as relay nodes
to improve the connectivity of mobile ground nodes. Once
again this is a reactive approach that decides from signal
strength measurements what to do next. Additionally, Basu
et al. [4] present an algorithm for realizing fault tolerant
networks with autonomous and semi-autonomous systems.
For this purpose, they use a graph algorithm that provides
a doubly connected network where any one robot can fail
without causing the network to separate into more than one
connected component. Other algorithms for maintaining the
connectivity in autonomous systems which are based on graph
topology are presented in [5] and [6]. Bekris et al. [7] present
a strategy for coordinated exploration of an environment by a
multi-robot system while maintain connectivity.

Most of the strategies which try to enhance the connectivity
by moving the mobile node to certain positions, act on
the simple assumption that communication within a certain
distance is always possible and that beyond this distance
the communication fails. This assumption does not consider
obstacles in urban environments and the properties of signal
propagation inside of buildings. To reduce the misplacement of
relay nodes, the quality of the connection at the new position
should be known in advance. The quality of a connection
can be described by many different attributes like signal
strength, loss-rate, utilization of the link and others. We use
the received signal strength as the quality indicator of the
connection between two robots, because many of the other
attributes are either situation dependent, or cannot be measured
by a relay node. The prediction of the signal strength on
paths in free space with line of sight can be approximated
using simple propagation models. The prediction in buildings
and on paths with obstacles between sender and receiver is
more complicated. In these cases phenomena like reflection,
diffraction or scattering have to be taken into account by the
propagation model. These and other phenomena are described
in [8].

A few navigation strategies like Reinl and von Stryk [9]
provide an interface for more realistic propagation models, but
use only a simple propagation model in their evaluation tests.
Because of this, a coordination with a realistic propagation
model for prediction of the signal strength is required.

For simulating communication a lot of different propaga-
tion models are available. Deterministic propagation models
like Ray Tracing, Beam Tracing [10] or UDel [11] emulate
the physical characteristics of the wave propagation when
estimating the signal strength at a given position. However,
these models are computationally expensive and need detailed
information about the environment. Therefore, they are not
practicable for applications like multi-robot exploration.

Empirical propagation models are based on regression using
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experienced data. They can be classified in two categories:
large-scale and small-scale models. The large-scale models
describe the fading of the signal strength over relatively large
distances. The fluctuations caused by reflection, diffraction,
scattering, and small movements are described by small-scale
models. Large-scale models are e.g. the Free Space Model,
Two Ray Ground Model, Log-Distance Model or Shadowing
Model [8]. The Free Space Model is a special case of a
Log-Distance Model and describes the logarithmic propagation
in non-urban environments with line-of-sight communication.
The Two Ray Ground Model takes the path reflected on
the ground into account in addition to the line of sight.
The Shadowing model, in contrast, introduces a log-normally
distributed random variable to account for shadowing effects.
In all these models obstacles in the environment can not be
specified.

Two well known small-scale models are Rician- and
Rayleigh Fading. They assume that signals arrive at the
receiver in different ways and interfere with each other. The
Rayleigh Fading model describes the resulting amplitude gain
by a Rayleigh distribution. The Rician Fading Model is a
special case of the Rayleigh Fading Model that considers a
single path only — typically the line of sight.

Both empirical and deterministic models have their disad-
vantages. The selection of an adequate propagation model for
a signal strength predictor is a trade-off between complexity,
accuracy and processing time. G. Wolfle and F. M. Landstorfer
[12] introduced an approach with dominant paths to describe
all rays passing the same rooms and walls. For the prediction,
neural networks were used. So the trained model depended on
static aspects such as the hardware used, the characteristics of
obstacles and the character of the environment. In [13] more
than thousand measurement were taken within indoor enviro-
ments to find good strategies to measure a local mean signal
strength. With the help of this large sample database the best
propagation models was identified. But in both approaches,
it seems that the environment is known in advance. In our
case, especially if the multi-robot system is used for exploring
an unknown environment, such detailed information about the
environment is not available.

III. PROPAGATION MODEL

In this work we have chosen to use a rather simplified
model. On the one hand, we want to get good predictions
for the anticipated signal strength, on the other hand we
do not have much information about the environment. Many
assumptions made in common propagation models, like the
minimal height of the antenna or outdoor conditions (e.g.
Nakagami Model [14]), are not true for our scenario. Besides
the lack of information about the environment (e.g. damping of
different materials) we also have only little computing capac-
ity. Therefore, we do not use a ray-tracing based propagation
model, but stick to a fading model.

We designed our predictor for improving navigation strate-
gies within large buildings. Thus, we assume an indoor
environment, where walls are the predominant obstacles for



communication. Because of these reasons, we chose a radio
propagation model which is similar to the Log-distance path
loss model, but additionally considers the damping influence
of walls. Define S as the position of the sender and R as
the position of the receiver. Then we define the loss of signal
strength over distance as

Lgist = =10 VD x log(d(S, R)). )

Here, d(S, R) is the distance between sender and receiver
and V D describes the damping effect over distance. VD is
constantly adapted while the robot moves around. Additionally
we consider the damping of obstacles (e.g. walls) using the
term

Lopst = —VW x #obstacles. 2)

Here, #obstacles is the number of (known) obstacles in the
line of sight between sender and receiver and VW describes
the damping of a single obstacle. VW is also adapted by the
robots. As the last part of the propagation model we mould
the transmission power of the sender as

Lstart = _ODa (3)

where OD is again an adaptive parameter.
The overall predicted path loss between a sender and a
receiver is
Loy = Lstart + Laist + Lobst- (€]

Ly is measured in [dB]. Within this model we assume that all
obstacles have the same damping factor. This is obviously not
the case, but a rather fair assumption, if the robot moves in a
typical indoor environment. There are several other influences
to the radio propagation like reflections and refractions. In
environments where these influences are dominant the chosen
propagation model had to fail and should be expanded.

Please note that we do not have any random term in this
prediction model as it is usually the case in signal strength
simulations. Randomization makes a simulation more realistic,
but in the case of signal strength prediction, we are only
interested in expected values (and maybe the variance).

The model is adaptive in three different parameters: loss
over distance, loss through damping of walls, and transmit
power. We assume that none of these parameters is known in
advance. Although the environment is unknown, the robot is
capable of mapping the environment while driving through it.
This may be done for example by different SLAM approaches
([15], [16]). Additionally, every robot knows the position of
every other robot in the map, and also the position of a
control station, if one exists. Details on how the necessary
measurements are obtained will follow in section V.

IV. FINDING THE PARAMETERS

As described in section III there are three different para-
meters we want to adapt, in order to tune the radio propagation
model as close to the real physical performance as possible.
The parameters are estimated based on measurements taken by
the real robots while they start to drive around. Therefore, we
need a good initial guess of the parameter values, otherwise
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we can not use the predictor right from the start. However, the
system will improve the model while the robots collect more
data.

To decide whether a set of parameters is good, we need to
define an error function F' that quantifies the difference be-
tween predicted signal strength values and true signal strength
measurements at positions in the environment. Let K denote a
set of points (R;, S;) in the environment for which the signal
strength is known. The measured signal strength for the i-th
element in K is M; while the predicted value is F;. Let k be
the number of elements in K. Then the error function for a
set of parameters (V. D; OD; VW) is defined as

Fvpopvw) =\ Zioo(F — My)2. (&)

As this link-strength prediction should also be used within
unknown environments we want a predictor which can be
adapted on-line, while the robots are driving.

Therefore the parameters of the propagation model were
only linear, a linear regression with a non-polynomial function
is possible. Therefor the equation:

Az =y ©)

has to be solved, where A represents the non-polynomial
function, x is a vector of the parameters and y the measured
signal strength. So let a measurement ¢ of the robot be the
triplet {d;,n;, M;} where d; is the distance between sender
and receiver, n; is the number of obstacles between sender
and receiver and M; is the measured signal strength at the
receiver. If there are m measurements, A is, according to the
signal strength propagation model:

-1 —10logio(d1)
-1 —10logio(dz)

—Nny

—Ng

A= @)

-1 —10log10(dm)

—MNm

and
M,
M,
y= . (t))

My,
while x is the searched parameter set

oD
VD &)
Vw

xTr =

With Householder transformation [17], this problem is
solved in a fast and numerical stable manner. The approach is
on-line capable and quite stable against faulty measurements.

V. COLLECTING DATA

As the signal strength predictor is developed for a real world
multi-robot system, we have to judge if such a simplified radio
propagation model will fit real world requirements. All used
measurements came from a real indoor environment and were
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Fig. 1. Footprint of the office environment (full map)

taken by a B21 robot. Radio hardware was a standard atheros
chipset WiFi card. As sender we used a laptop which has
similar radio hardware. For tests the laptop was used as control
station, that did not move within the environment. For more
information about the used robot framework please refer to
[18].

The environment is an common office environment. Foot-
print can be seen in Figure 1. The robot localized itself in
a self-generated map. So it can only use information about
the environment discovered by itself. In Figure 2 you can see
the map the robot has built and used for localization. Please
notice that the robot did not have information about the rooms
that adjoin to the corridor, because the doors were closed. So
we expected the parameter for the damping of one obstacle to
be higher than it would be if we had measured it. This was
because in reality the damping was caused in reality by more
walls than were known to the robot.

VI. EVALUATION OF THE MODEL

To evaluate how well the signal predictor can be used to
predict the real signal strength, we performed several tests.
Every test is made with the sparse map, the map the robot
had built by itself. Additionally the full footprint of the office
environment was used as reference to see how important full
information about the environment is.

L

—

—

Fig. 2. Cropped map the robot uses to localize itself
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We have three different parameters in radio propagation
model. To check if all parameters are necessary, we evaluated
how much influence each parameter has with respect to
prediction quality. Therefore, we evaluated the best found
subset of parameters, while one or two parameters were set to
zero. Results can be seen in table I

TABLE I
PERFORMANCE OF THE RADIO PROPAGATION MODEL, IF ONLY SPECIFIC
PARAMETERS WERE TRAINED IN A SPARSE MAP

| VD | OD | VW | Fges
VD adaptable OD, VW =0 | 5.1246 | 0 0 9.0
VD,OD adaptable VW =0 | 2.5312 | 34415 | O 8.9
VD, VW adaptable OD =0 | 4.6418 | 0 5.5352 | 6.7
VD,OD,VW adaptable 1.2359 | 41.972 | 8.32024 | 4.0

Defining VW as zero implies that we do not consider any
obstacles. On the other side, taking OD as zero, implies that
the transmit power of the sender is not important for the
propagation model. As the error values in table I show every
parameter is valuable with respect to a better model of the
real radio behaviour. Even though the parameter OD does not
improve the model without taking obstacle into account, it is
important for the full model.

In Figure 3 you can see an example prediction for the sparse
map. The predicition is made for the controle station. As you
can see, walls do have a certain damping effect. Although
the robot did not know all details from the map, the predicted
signal strength is usable. Of course this leads to a higher wall-
damping factor than in reality.
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Fig. 3. An example prediction for the learned parameter set.

To decide if the prediction of the signal strength is usable in
real world environments, we looked at the fault distribution of
the model. In Figure 4 you can see such a distribution from a
parameter set. The parameter set was trained within the sparse
map.

The x-axis shows the difference between the predicted value
and the measured value during one run. The y-axis show the
number of measurements with this relative error. So there



are for example about 88 measurements which are correct
or differ by less than 0.5 dB from the prediction and e.g.
six measurements which differ by -6dB from the predicted
value. Please notice that the three predictions which differ by
-30dB, results from three errors produced by the localization
algorithm. The robot did not have a correct position estimation
in these cases.

Figure 4 shows that most of the predicted signal strengths
are within an interval of [-4;4] dB. This shows that, although
the radio propagation model is not always correct and has
difficulties in some cases, it is valuable to predict a trend how
the signal strength will behave if the robot will drive to a
certain position.

In Figure 5 the error during a run of a robot is displayed.
The x-axis shows the number of measurements taken until then
while the y-axis shows the error of the parameter set found
at that time step once for the cropped map build by the robot
itself and once for the full map provided by the blueprint
of the building. Note that in the beginning, both error are
identical because we used exactly the same measurements but
only different underlying maps. Most remarkable is the point
in time when the robot began to disappear behind the walls
(at measurement 740). While the error was very low during
the line of sight movement (always with respect to the control
station) the error raised significantly when there was no LoS
but the error is not so high that the propagation model failed
for this situation. While using the cropped map, it shows out
that the prediction error is relatively high (around 4dB). When
using the full map the error rises not so fast and reaches only
a value of 3.5db. So the full information about all walls helps
the predictor to adapt more likely to the real environment.
But the differences are not that substantial that a full map is
necessary.
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Fig. 4. Fault distribution. Measurements on far left side are wrong

localization from the robot

Digital Object Identifier: 10.4108/ICST.ROBOCOMM2009.5816
http:/ldx.doi.org/10.4108/ICST.ROBOCOMM2009.5816

" full map ]
cropped map, 4%+«
ﬂ‘“.'.

error in [dB]

1 L s L 1
0 200 400 600 800 1000
Messurements depend on position of the receiver

Fig. 5. Error of the propagation model in respect to the cropped map and
the full map. At measurement 740 the robot dissappeared behind the wall.

VII. USING SIGNAL STRENGTH PREDICTION FOR MULTI
ROBOT SYSTEMS

The signal strength predictor should be a tool to gain more
information to control single and multi-robot systems. With its
help, coordination of multi-robot systems should be improved.
Additionally the decision where to go next can be influenced.
Most current navigation algorithms for multi-robot systems
either ignore communication and assume an always available
communication or they just assume that the connection only
depends on distance: If the robots are nearer to each other
than a certain threshold, there is communication, if not, there
is no communication. In real world experiments, especially
when covering a huge area, such assumptions are not feasible.
We want to present just two applications which might gain
advantages from using the signal strength predictor, but several
other are possible.

A. Exploration

A coordinated exploration with a multi-robot system shows
a much better performance than a single robot exploration,
especially in respect of exploration time [19]. But the coor-
dination is crucial. To coordinate the different robots there
must be communication between them. Not necessarily to
tell the other robots where to go, but mainly to share each
other’s maps. The signal strength predictor can be used to
assure connection between the robots. As mentioned in [19]
the necessity of always keeping a communication link between
all robots is not given if your concern is only about exploration
time. But the predictor becomes more valuable if there is e.g.
a control station from where the exploration is controlled and
observed. With knowledge how the signal strength will change
while moving the robot, it is possible to make connection loss
much less likely and keep the data collected at the control
station always up to date. Also, in dangerous environments it
is easier to distingish if a robot is lost due to connection or
due to outside influences.



B. Building an Infrastructure

In trouble areas like environments after a disaster, there is
usually no communication infrastructure available. If robots
are used for search and rescue missions, they carry everything
with them to establish at least a wireless communication.
Therefore they have to be positioned in a way that they
maximize the area from where they can receive radio, but
also have to make sure that they have a connection to each
other. Thus helpers which enter the area have access to a
communication network to communicate with other helpers
or a control station.

This problem is a variant of the Art Gallery Problem (for a
description and the art gallery theorem see [20]), which is
known as NP-complete. The difference lies in the unusual
metric, implied by the signal strength predictor.

When the parameter set of the environment is learned, the
predictor can be used to solve such problems (see Fig. 6).

Fig. 6.
predictor. One solution for 5 robots found with a swarming approach. Darker
colour means better connection to at least one robot.

Building an infrastructure with the help of the signal strength

VIII. CONCLUSION

We presented a signal strength predictor based on radio
propagation models. We propose it to improve navigation
strategies and coordination of multi robot systems. The pre-
dictor is customizable to the environment and can be adapted
on-line while using the robots. With the approach we showed
a possibility to adapt the predictor even with erroneous mea-
surements. We have shown that for indoor environments the
grade of accuracy of the prediction is high enough to predict
the tendency of the signal strength when moving the robot. So
it is possible to navigate robots with a much lower chance of
losing contact.

Additionally we suggested two applications in the field of
navigation which can be improved and expanded in function-
ality with the help of the signal strength predictor.

Further improvements of navigation strategies should be
made with the radio propagation model. We want to evaluate in
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which way more sophisticated propagation models will affect
computing time and prediction accuracy. One special feature
will be to expand the model to distinguish between different
types of obstacles and to learn their damping. Additionally
we want to estimate in which way navigation strategies like
exploration are affected by using a signal strength predictor.
Especially aspects like the time needed until a goal is reached
and the number of connection losses are interesting.
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