About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
sis 18(17): e4

Research Article

Qos-Based Web Service Discovery And Selection Using Machine Learning

Download1822 downloads
Cite
BibTeX Plain Text
  • @ARTICLE{10.4108/eai.29-5-2018.154809,
        author={Sarathkumar Rangarajan},
        title={Qos-Based Web Service Discovery And Selection Using Machine Learning},
        journal={EAI Endorsed Transactions on Scalable Information Systems},
        volume={5},
        number={17},
        publisher={EAI},
        journal_a={SIS},
        year={2018},
        month={5},
        keywords={Web Service, WSDL, QoS prediction, Machine learning, Service Provider reputation},
        doi={10.4108/eai.29-5-2018.154809}
    }
    
  • Sarathkumar Rangarajan
    Year: 2018
    Qos-Based Web Service Discovery And Selection Using Machine Learning
    SIS
    EAI
    DOI: 10.4108/eai.29-5-2018.154809
Sarathkumar Rangarajan1,*
  • 1: Centre for Applied Informatics, Victoria University, Melbourne, Australia, VIC-3011
*Contact email: sarath0808@gmail.com

Abstract

In service computing, the same target functions can be achieved by multiple Web services from di˙erent providers. Due to the functional similarities, the client needs to consider the non-functional criteria. However, Quality of Service provided by the developers su˙ers scarcity and lack of reliability. In addition, the reputation of the service providers is an important factor, especially those with little experience, to select a service. Most of the previous studies were focused on the user's feedbacks for justifying the selection. Unfortunately, not all the users provide the feedback unless they had extremely good or bad experience with the service. In this vision paper, we propose a novel architecture for the web service discovery and selection. The core component is a machine learning based methodology to predict the QoS properties using source code metrics. The credibility value and previous usage count are used to determine the reputation of the service.

Keywords
Web Service, WSDL, QoS prediction, Machine learning, Service Provider reputation
Received
2018-04-05
Accepted
2018-04-05
Published
2018-05-29
Publisher
EAI
http://dx.doi.org/10.4108/eai.29-5-2018.154809

Copyright © 2018 Sarathkumar Rangarajan, licensed to EAI. This is an open access article distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL