Research Article
Personalized neuroscience: User modeling of cognitive function and brain activity in the cloud
@ARTICLE{10.4108/eai.28-9-2015.2261443, author={Teresa Nick and Laura Berman and Arye Barnehama}, title={Personalized neuroscience: User modeling of cognitive function and brain activity in the cloud}, journal={EAI Endorsed Transactions on Ambient Systems}, volume={3}, number={10}, publisher={EAI}, journal_a={AMSYS}, year={2015}, month={12}, keywords={cloud, wearable, electroencephalography, eeg, cognitive game}, doi={10.4108/eai.28-9-2015.2261443} }
- Teresa Nick
Laura Berman
Arye Barnehama
Year: 2015
Personalized neuroscience: User modeling of cognitive function and brain activity in the cloud
AMSYS
EAI
DOI: 10.4108/eai.28-9-2015.2261443
Abstract
Reliable detection and prediction of neural activity and behavior requires a user model of brain activity that dynamically adapts based on known time-dependent physiological processes, as well as unknown traits of the user. We have applied wireless electroencephalography (EEG) sensors, edge devices with feedback capability, and cloud-assisted data acquisition to real-time and longitudinal brain monitoring and alerting. Toward a user model of brain function, we collected neural and behavioral data from humans in the field. The data replicate previous findings that were obtained under tight laboratory control, suggesting that the methods that we describe will be useful for user modeling of human brain activity under more natural conditions. Specifically, we report that frontal cortex oscillations reorganized with age. Focusing on time-varying aspects of behavior, we then found that performance on memory-intensive cognitive tasks declined during the day. Next, we examined interactions between neural activity and behavioral performance. We report that neural activity and performance co-varied and that this co-variation depended on the cognitive task in ways that were, again, consistent with previous laboratory studies. Lastly, we report the foundations of an adaptive model based on this system that will enable dynamic personalization tailored to each user.
Copyright © 2015 T. Nick et al., licensed to EAI. This is an open access article distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.