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ABSTRACT 
Reliable detection and prediction of neural activity and behavior 
requires a user model of brain activity that dynamically adapts 
based on known time-dependent physiological processes, as well 
as unknown traits of the user.  We have applied wireless 
electroencephalography (EEG) sensors, edge devices with 
feedback capability, and cloud-assisted data acquisition to real-
time and longitudinal brain monitoring and alerting. Toward a 
user model of brain function, we collected neural and behavioral 
data from humans in the field.  The data replicate previous 
findings that were obtained under tight laboratory control, 
suggesting that the methods that we describe will be useful for 
user modeling of human brain activity under more natural 
conditions. Specifically, we report that frontal cortex oscillations 
reorganized with age.  Focusing on time-varying aspects of 
behavior, we then found that performance on memory-intensive 
cognitive tasks declined during the day.  Next, we examined 
interactions between neural activity and behavioral performance.  
We report that neural activity and performance co-varied and that 
this co-variation depended on the cognitive task in ways that 
were, again, consistent with previous laboratory studies.  Lastly, 
we report the foundations of an adaptive model based on this 
system that will enable dynamic personalization tailored to each 
user. 

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design - distributed networks, wireless 
communication; B.4.3 [Hardware]: Interconnections 
(Subsystems) - interfaces; G.3 [Mathematics of Computing]: 
Probability and Statistics - correlation and regression analysis, 
multivariate statistics,  probabilistic algorithms, time series 
analysis H.2.8  [Information Systems]: Database Applications - 
data mining, scientific databases, statistical databases; I.2.1 
[Artificial intelligence]: Applications and Expert Systems - 
medicine and science 

General Terms 

Algorithms, Measurement, Design, Experimentation, Human 
Factors 

Keywords 
cloud, wearable, electroencephalography, EEG, cognitive game 
 

1. INTRODUCTION 
Accumulating evidence indicates that the adult brain remains 
somewhat plastic [1]-[4]. The adult brain also reliably expresses 
electrical activity patterns, enabling detection and prediction of 
specific states or events, such as drowsiness, seizure, and loss of 
focus [5], [6].  Development of a neurobehavioral user model that 
would enable the identification of deviations from typical patterns 
remains difficult due to the lack of a generic model upon which to 
base comparisons and build adaptive changes.  In laboratory 
studies, large cyclic and non-cyclic changes in cognitive function 
and brain excitability occur reliably across time. Well-known 
neurobehavioral patterns are associated with age, as well as daily 
rhythms and other physiological cycles.  For example, executive 
function declines with age [7] and frontal cortex brain waves in 
the alpha frequency band decrease with age [8], [9].  Circadian 
(daily) cycles and sleep pressure interact to dynamically regulate 
brain function [10], [11] and these changes are reflected in 
behavior. For example, short-term memory performance declines 
during the day [12]. Thus, any generic neurobehavioral user 
model will need to adaptively recalibrate based on these time-
varying parameters. 

Unfortunately, these laboratory phenomena have not been 
quantified in large, diverse populations with sensors that can be 
worn for extended time periods in a variety of environments.  
Further, humans in the laboratory may express different, atypical 
neural and behavioral patterns, suggesting that reports from 
laboratory studies should not be accepted at face value and, 
instead, will need to be retested under more natural conditions 
before incorporation into a user model.  We have now built a 
system that enables minimally-obtrusive, longitudinal testing of 
neural and behavioral activities and compared results from this 
system to published laboratory-based studies. 

The three main components of the system were: (1) dry electrode 
sensors; (2) an edge device (phone or tablet) that communicated 
with the sensors using Bluetooth Low Energy, engaged the user in 
cognitive games and other tasks, and sent data to the cloud; and 
(3) a cloud-based analytics and storage system that received data 
from the edge device, executed data-driven analytics, and 
presented the analyzed data back to the edge device accessible 
from a scalable NoSQL database.  Here we report design features 
that enabled the integrated acquisition system and subsequent 
analyses.   

This study evaluates the transferability of laboratory findings to 
the more natural conditions allowed by wearable devices.  
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Building on the previous laboratory work, we collected data from 
848 of our users in the field.  Our study differed in several 
important respects from these prior studies: (1) On-demand access 
ensured that people using the system were motivated to use it. (2) 
Dry electrodes in a wireless headset ensured that people were not 
wet, restrained, and uncomfortable. (3) The scalability of the 
system enabled large numbers of recording sessions that exceeded 
those of most other studies by at least one order of magnitude.  (4) 
Because the user was not in the laboratory, experimental control 
was limited.  (5) Because we did not exclude users based on any 
static trait, such as race, gender, or medical condition, it is likely 
that our recording cohort was more diverse than those of 
laboratory studies.  (6) The use of dry electrodes necessitated 
limiting recordings to the forehead, which lies over the frontal 
cortex of the brain.  The frontal cortex orchestrates executive 
function and plays critical roles in learning, memory, attention, 
and behavioral inhibition. 

We provide system details on the cloud data acquisition system. 
Specifically, we have solved several problems regarding the 
recruitment and retention of users, the secure transfer and analysis 
of large amounts of time-series data with relatively high sampling 
rates, and the combination of neural and behavioral data collection 
in a wearable system that users carry with them.   

Other contributions of this study are the novel data showing 
replication of highly controlled laboratory studies in the field and 
the descriptions of the generic and user-specific modeling 
approaches.  The overall design is based on iterative unsupervised 
machine learning (k-means clustering) to group similar users and 
to mold predictive capabilities to specific users.  

This integrated system enables the application of high-resolution 
neural and behavioral feedback to encourage user interaction in 
real-time and to continuously monitor user physiology in near real 
time.  It has enabled the acquisition of large amounts of neural 
data and the replication of findings previously reported only in the 
laboratory.  The development of the user model enables alerting 
of the user and his/her network in the event of certain medical 
emergencies. In case of loss of focal attention, the user can be 
prompted to perform an activity that enhances focus, such as 
breathing deeply or taking a short break.  Similar non-life-
threatening events can be handled with other relevant prompts. 

2. SYSTEM ARCHITECTURE 
2.1 Wearable EEG Hardware 
Our EEG device (Figure 1, Left) is a commercially available 
headband with four gold-plated electrodes, 3 active and 1 passive.  
The headband communicates using Bluetooth Low Energy with 
an edge device.  For the experiments described in this paper, 
differential recordings were made from two active electrodes 
placed on the left side and center of the forehead. The closest sites 
in the international 10-20 EEG positioning system are Fp1 and Fz, 
respectively.   A Driven Right Leg (DRL) circuit was used to 
reduce common-mode interference [13].  The DRL electrode was 
passive.  Data were sampled at 250 Hz. 

The electrodes were positioned to best monitor activity of the 
frontal lobe of the brain, which has roles in executive function, 
personality, and social interactions.  However, as with any EEG 
recording, there are other sources of voltage fluctuations that may 
have influenced the recordings, including brain activity in other 
areas, eye movements, eye blinks, and muscle activity. 
Movement-related artifacts were identified and removed during 
data processing (see below). 

 Figure 1. System architecture consisted of a wearable EEG 
headband (Left), an application running on an edge device 

(Middle), and a cloud platform built using AWS services and 
custom code (Right).  Main cloud applications were: 

Authentication with Cognito (top) and storage in S3 and 
DynamoDB and analysis with R (bottom).  Details are 

provided in the text. 
 

2.2 Edge Device Application 
An edge device application (Figure 1, Middle) running in iOS or 
Android communicated with the EEG headband.  To connect to 
the headband, the user turned on the headband, opened the app, 
saw the prompt that indicated that the headband was available, 
and selected the headband for use.  Once connected, the user 
could view progress on his/her "journey", play cognitive games, 
train focus using gaze fixation feedback, or view the filtered 
voltage in time or frequency domains. 

Once the user selected any screen other than the journey screen, 
the app created an object in Amazon Web Services (AWS) S3 
storage service, wrote the header in JSON, and began writing 
binary data from the headband. The header included various data, 
such as the timestamp, user identifier, the U.S. state-level 
location, and what screen the user was on. Moving to another 
screen or closing the app terminated the recording session. The 
file was then uploaded to S3. 

For display, the time and frequency domain voltage screens relied 
on filtering with Infinite Impulse Response filters (1 - 50 Hz).  A 
discrete Fourier transform was implemented to obtain power 
spectra for display as both meter indicators of neurally-significant 
frequency bands and also as a dynamic spectrogram. 

Cognitive games consisted of one game that relied heavily on 
working memory (Pair Matching), one that relied more on focal 
attention (Object Mismatch), and three that relied strongly on both 
working memory and focal attention (Change Detection, Target 
Connect, and Pattern Recreation).  Game scores were saved as 
percent correct.  To encourage user retention, a journey screen 
was provided that allowed the user to use game achievements to 
earn badges and travel toward the Santa Monica Pier. 

2.3 Cloud Applications 
The cloud platform (Figure 1, Right) was built in AWS using 
Cognito, S3, DynamoDB, and Simple Workflow services.  An 
authentication server provided tokens from Cognito to the edge 
device app. The edge device then used tokens to connect and put 
data files into S3.   



The S3 data bucket was monitored by a Simple Workflow that 
then passed any new data files out to waiting analysis servers.  
The delay between the user ending the recording session and the 
data finishing analysis was typically less than 5 min (see Data 
Transfer below for file size impacts). 

Data files were processed and all analyses were executed using R.  
Files were discarded if the timestamp had an abnormal format, the 
file could not be opened, the file was larger than 4 MB, the file 
contained < 15 seconds of data, or there was a failure in the binary 
read.   

After conversion from binary, raw data were filtered with a 1024-
order FIR filter 1-125 Hz.  The trace was median subtracted and 
then a threshold was computed independently for each channel as 
mean + 8*STD of the trace.  To remove large artifacts, the longest 
duration recording between threshold crossings was extracted for 
further analysis.  The Fast Discrete Fourier Transform (FFT) was 
computed on the extracted trace.  In addition, the extracted 
cleaned trace was analyzed with algorithms for detecting eye 
blinks, left and right eye movements, and facial muscle 
contractions.  Root Mean Square (RMS) was also calculated from 
the clean trace to assess overall power. 

Cleaned data were automatically discarded if their duration was 
less than 6 seconds. ~20% of incoming data were automatically 
rejected due to insufficient duration or file corruption.  Data were 
marked as best quality if the maximum voltage amplitude was less 
than an experimentally-determined threshold.  All processed data 
were then saved to the database and only best quality data were 
included in the analyses below.  ~38% of data remaining after the 
first screen were automatically marked as best quality (see below).  
The power spectrum of the cleaned data was segmented into 
neurally-relevant frequency bands and the power in these bands 
was summed.  In the time domain, the auto-correlations and -
covariances within traces and cross-correlations and -covariances 
between the two channel traces were computed.  Peak amplitude 
and lag time features were obtained from these correlation 
measures. 

Features calculated from the cleaned data were combined with all 
header variables that had been converted from JSON and loaded 
as a single row into a DynamoDB table, with each feature 
constituting a separate column.  Primary keys were user ID and 
timestamp.   

3. LESSONS LEARNED 
3.1 Data transfer 
Given the relatively high sampling rates, we instituted a dual-
buffering system.  Data were stored on the device until the end of 
a session and then transferred to an intermediate store in S3.  If 
the analytics pipeline backed up, the data simply sat in S3 until 
processing. 

We found that some users recorded sessions exceeding 30 
minutes, creating relatively large files that slowed down analytics 
because the Simple Workflow did not start a new run until all 
analyses from the last run were complete.  To overcome this 
problem, we added data chunking on the edge device, such that 
files were closed and uploaded to S3 at faster rates. This resulted 
in files of standard sizes and increased analytics performance.  
This modification also allowed users to receive neural status 
updates while they were still recording.   

3.2 Data quality 
For our initial studies to characterize neural activity patterns, it 
was paramount that data be trusted.  To achieve this, we marked 
data as best or acceptable quality and only analyzed the best 
quality data, with the expectation that acceptable quality data 
might be included once neural and behavioral patterns were 
identified.  We have also built into the analysis system a function 
to keep track of the data quality from each user, so that users may 
be alerted to adjust their headband and/or change their recording 
habits when they consistently provide lower quality data.  

3.3 Analysis 
Due to the known contamination of neural EEG recordings with 
movement and muscle artifacts, we expected that we would 
discard large amounts of data.  We found that detection of 
artifacts prior to filtering was not reliable, which required that we 
filter all incoming data.  To accelerate FIR filtering and other 
analytics, we used AWS EC2 instances in the Compute Optimized 
family with high memory.  Another approach would have been to 
use IIR filters, as we did on the edge device. However, this would 
have negatively impacted data quality. 

4. PROOF-OF-CONCEPT 
We have found that field-deployed EEG wearables and mobile 
apps can produce significant neural and behavioral results that are 
in line with previous highly-controlled laboratory studies.  These 
wearables and apps were provided to anyone that bought the 
headband and data were collected without regard to any static 
trait, such as age, gender, profession, or race.  Remarkably, in 
spite of the inherent variability in the data and lack of control of 
user behavior, results were reliable and consistent with previous 
findings. 

4.1 Neural Activity: Frontal Activity 
Reorganizes With Age 
Previous work indicated that brain oscillations vary with age [14]-
[16].  To test the ability of the wearable EEG headband to record 
neural activity of humans in the field, we examined whether this 
phenomenon could be observed in our dataset.  We had a limited 
number of users who had provided their age and gender, so this 
study was necessarily limited to those users (N = 66 users, 11 
Females, 55 Males).  Users younger than 20 years were compared 
to those 20 years and older.   

The distribution of power in 5 neurally-relevant frequency bands 
across the two age groups were compared with a 2-way Analysis 
of Variance (ANOVA): delta (1 - <4 Hz), theta (4 - <7 Hz), alpha 
(8 - < 12 Hz), beta (15 - < 25 Hz), and gamma (30 - 125 Hz).  
There was a significant age x frequency band interaction, 
indicating that the power spectral density in these neurally-
relevant bands shifts with age (Table I). 

For rough visualization of these significant changes, we plotted 
the mean of each frequency from 1 to 40 Hz for the two groups 
(Figure 2).   



Table I. ANOVA results for power ~ age x frequency band 

 Df Sum Sq Mean Sq F-value Pr(>F) 

Band 4 4.111 1.0277 534.094 < 2e-16 

Age 1 0.000 0.0002 0.114 0.735419 

Band x 
Age 

4 0.046 0.0115 5.971 0.00011 

Abbreviations:  ANOVA: Analysis of Variance; Df: Degrees of 
Freedom; Sq: Squares 

 

 
Figure 2. EEG power redistributes with age.  Mean 

normalized power across subjects <=20 years (orange) or >20 
years (cyan) is plotted relative to frequency.  Frequencies in 

the alpha range are lower in the older subjects (arrow). 
 

4.2 Cognitive Function: Working Memory 
Declines During The Day 
Previous laboratory work has indicated that short-term memory 
declines during the day [17].  We examined whether including 
cognitive tasks that require working memory in our app could 
enable measurement of this effect in the field.  We analyzed 
sessions during which both cognitive game scores and neural 
recordings were available.  We found that performance on a 
memory-intensive task, Pair Matching (Figure 3A), declined 
during the day (Figure 3C). The coefficient of determination (R2) 
was small, but significant, which was striking given the lack of 
control in these experiments. 

To examine whether performance on all games, regardless of 
memory, might decline during the day, we also examined an 
Object Mismatch game (Figure 3B), which requires focal 
attention and little working memory.  In contrast to the memory-
intensive task, performance on this task was stable during the day 
(R2 = 0.006, p = 0.50).  For Pair Matching, we obtained 70 
sessions from 48 unique users.  For Object Mismatch, we obtained 
75 sessions from 50 unique users.   

 

 

 

 
Figure 3. Performance in a working memory game, but not a 

focal attention game, declined with time of day.  (A) The 
working-memory intensive Pair Matching game required the 

user to turn over cards and match all pairs within a 3-sec time 
window or a life was lost.  The game ended when the user lost 
three lives.  (B) The focal attention-intensive Object Mismatch 
game required the user to select the mismatched object within 
a 3-sec window. As with Pair Matching, the game ended when 

the user lost three lives.  (C) Performance on the Pair 
Matching game declined with time of day.  

 



 

Figure 4. Alpha and gamma power varied with performance 
on a focal attention-intensive game, but not a memory-

intensive game.  (A) Alpha power increased with percent 
correct in the Object Mismatch game.  (B) Gamma decreased 

with performance on Object Mismatch. (C, D) Alpha and 
gamma were not correlated with performance on the Pair 

Matching game. 

4.3 Neural Activity Co-Varies With Cognitive 
Task 
In the previous sections we showed data that indicated that the 
wearable headband system can measure neural and behavioral 
activity.  We next combined neural and behavioral data in order to 
assess EEG power spectral changes with cognitive task.  We 
found that EEG alpha and gamma varied with performance on a 
focal attention-intensive task (Object Mismatch, Figure 4A-B), 
but not a memory-intensive task (Pair Matching, Figure 4C-D).  
This finding is consistent with laboratory reports that alpha power 
increases with attention [18], [19].  Beta, which lies between 
alpha and gamma, was not significantly modulated during either 
task (Object Mismatch: R2 = 0.02, p = 0.23; Pair Matching: R2 = 
0.004, p = 0.57). 

These data indicate that our system can record neural performance 
indicators during user activity and, in the case of at least one focal 
attention-intensive task, predict the user's performance on that 
task.  The fact that the neural activity varies with cognitive load 
also suggests that the system may be able to determine relative 
focal attention demand of tasks in educational, medical, and 
industrial settings and make that information available to users.  

5. ADAPTIVE USER MODELING 
Above, we present a series of small and significant findings from 
recordings of humans that have not been selected for any static 
trait. Their activity was monitored, not controlled.  Using these 
and other data, reliable patterns in the field can be combined to 
learn a generic user model with a given set of static traits.  Based 
on these traits, plus additional relevant information such as time 
of day, the brain activity of a given user can be predicted.  
Variations from this model can feed back to inform the user-
specific model as well as the generic model.  Alerts and triggers 
can then rely on deviations from the model. 

5.1 A generic user modeling approach 
Here we have presented data that indicate reliable patterns of 
brain activity and behavioral performance in terms of age, time of 
day, and task.  However, there is much variability in the 
individual measures of brain activity and behavior.  How does one 
construct a robust generic user model in spite of the variability?  
Below, we present an approach to forming a generic user model. 
We have not exhaustively tested the example model for predictive 
capacity, as this paper focuses on the feasibility and approach, not 
the model details. 

We have used unsupervised machine learning, k-means clustering, 
to begin to attack the problem of generic user modeling. For our 
example, we show data from the Object Mismatch game discussed 
in the previous section.  Object Mismatch neural data in the 5 
frequency bands discussed earlier (delta, theta, alpha, beta, and 
gamma) were k-means clustered with a maximum cluster count of 
10.  10 clusters were produced and these were sorted based on 
alpha power and divided in half.  Next, the Object Mismatch 
percent correct scores were compared between the high- and low-
alpha cluster groups. We found that the 5 clusters with the lowest 
alpha power performed significantly lower on the Object 
Mismatch task than the 5 clusters with the highest scores (Figure 
5). 

In summary, this approach uses segmentation of the data with 
unsupervised machine learning, potentially followed by 
recombination of clusters based on informed neuroscience 
decisions. In the example, clusters were recombined based on a 
simple top-bottom split based on alpha power.  Next, any 



combined clusters should be visually inspected at least in the 
dimension of recombination to ensure that combined clusters 
remain reasonably separated (Figure 5A).  Features that are not 
used in the clustering may be analyzed to make inferences about 
results one might expect in future experiments, thus forming a 
generic user model for neural-neural and/or neural-behavioral 
relationships (Figure 5B; t-test, p < 0.043, lowest alpha, N=31; 
highest alpha, N=44).  Lastly, the prediction accuracy of the 
model should be tested regularly using post-hoc comparisons of 
predicted and actual data. 
 

 
Figure 5. Unsupervised clustering of data based on neural 
activity results in clusters with significant differences in 

cognitive performance.  k-means clustering resulted in 10 
clusters that were divided in half based on mean alpha power.  

(A) The top (cyan) and bottom (orange) clusters visually 
separated in gamma and alpha dimensions.  (B) The scores on 

Object Mismatch for the two clusters were significantly 
different. 

 

5.2 A user-specific modeling approach 
Once generic user models are formed, the position of specific user 
traits and data can be localized in multi-dimensional space.  Upon 
initial data acquisition from a user, the generic model will provide 
most predictions of user behavior based on static trait alignment 
with existing generic clusters.  As data acquisition for a given user 

proceeds, the generic model can be refined through an iterative 
approach of feeding user data into machine learning algorithms 
and obtaining new and/or shifting clusters.  As more data from the 
user are acquired, the user-specific model, also created through 
iterative machine learning, prediction, and accuracy comparison, 
can begin to stand alone, becoming more and more molded to that 
specific user and better able to detect divergent neural or 
behavioral activity. 

Building on this model, we have used multiple linear regression to 
determine the relationships (temporal and otherwise) between 
neural activity and behavior in each cluster, evaluated model 
quality based on the coefficient of determination, and calculated a 
user model error factor from the Mahalanobis distance of their 
feature vector from the center of their group's cluster.  A routinely 
updated user model with the error factor can be automatically 
downloaded to the edge device to enable detection of user 
divergence from their own neural and behavioral baselines.  The 
decision to alert the user upon divergence is weighted by the error 
factor.  With large divergence, user features will likely fall into 
another generic cluster, potentially resulting in shifting of 
predictions and, subsequently, better fits.  

6. CONCLUSIONS 
Functional deployment of wearables for health and wellness 
alerting and triggering fundamentally requires dynamic user 
models that can provide generic multidimensional predictions of 
neural activity and behavior.  Further, dynamic user models can 
enable sculpting of predictions to specific users.  This requires 
employment of hard-core neuroscience combined with scalable 
recording and devices that users want to use.  

We have built a scalable solution that has collected, analyzed, and 
stored data from over 10,000 recording sessions.  Here we show 
analyses of these data, revealing replication of findings that have 
previously been observed only under highly controlled laboratory 
conditions.  In addition, we describe a novel approach to generic 
and user-specific modeling utilizing iterative k-means clustering, 
quality checking, and adjustment.  This system provides a 
mechanism for scalable personalized user neural feedback, health 
research, and real-time monitoring.  Potential applications for this 
technology include a system to alert users when they are stressed 
based on brain hemispheric asymmetry, a system to assess the 
cognitive engagement of post-stroke patients in therapeutic games 
for rehabilitation, and a system to monitor neural correlates of 
focal attention of students in a classroom. 
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