About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
Proceedings of the 2nd International Conference on Information Economy, Data Modeling and Cloud Computing, ICIDC 2023, June 2–4, 2023, Nanchang, China

Research Article

An Overview of Research on Digital Replication Technology Implementation

Download395 downloads
Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.4108/eai.2-6-2023.2334613,
        author={Bo  Wu and Wangbei  Xu and De’an  Chen and Xingrui  Huang and Zeyu  Li and Kaisong  Zhang and Yongwei  Shen},
        title={An Overview of Research on Digital Replication Technology Implementation},
        proceedings={Proceedings of the 2nd International Conference on Information Economy, Data Modeling and Cloud Computing, ICIDC 2023, June 2--4, 2023, Nanchang, China},
        publisher={EAI},
        proceedings_a={ICIDC},
        year={2023},
        month={8},
        keywords={industry 40 digital twin finite element model deep learning},
        doi={10.4108/eai.2-6-2023.2334613}
    }
    
  • Bo Wu
    Wangbei Xu
    De’an Chen
    Xingrui Huang
    Zeyu Li
    Kaisong Zhang
    Yongwei Shen
    Year: 2023
    An Overview of Research on Digital Replication Technology Implementation
    ICIDC
    EAI
    DOI: 10.4108/eai.2-6-2023.2334613
Bo Wu1, Wangbei Xu1,*, De’an Chen1, Xingrui Huang1, Zeyu Li1, Kaisong Zhang1, Yongwei Shen1
  • 1: Tianjin University of Technology
*Contact email: xtjut2014@163.com

Abstract

Digital Twin is a technology that uses digital modeling to reflect physical entity changes based on physical and data driving, connect real space with virtual models, and simulate real models in virtual space [1]. This article summarizes the step-by-step implementation process and discusses physical modeling, virtual modeling, data acquisition and pro-cessing, connection between physical and virtual environment, development trend, and difficult problems. The focus is on the technical realization of digital twin technology.

Keywords
industry 40 digital twin finite element model deep learning
Published
2023-08-02
Publisher
EAI
http://dx.doi.org/10.4108/eai.2-6-2023.2334613
Copyright © 2023–2025 EAI
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL