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Abstract. Digital Twin is a technology that uses digital modeling to reflect physical entity 
changes based on physical and data driving, connect real space with virtual models, and 
simulate real models in virtual space [1]. This article summarizes the step-by-step imple-
mentation process and discusses physical modeling, virtual modeling, data acquisition and 
processing, connection between physical and virtual environment, development trend, and 
difficult problems. The focus is on the technical realization of digital twin technology. 
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1. The current status of digital twin technology

Industry 4.0, which uses advanced technologies such as AI, IoT, robotics, drones, autonomous 
vehicles, and virtual reality, enhances efficiency and reduces cost. Digital twin technology is a 
vital component of Industry 4.0, enabling manufacturers to create virtual replicas by collecting 
data from IoT sensors and other connected devices. Siemens successfully integrated real and 
virtual worlds using digital twins in the automotive industry, facilitating faster on-site debug-
ging, creating sustainable feedback for improvement, and reducing design optimization cycles. 
Digital twin technology plays a critical role in future production [2]. 

1.1 Implementation process of digital twin technology 

Tao et al. [3] defined a complete digital twin as consisting of five parts: physical entity, virtual 
entity, data, service, and connection, shown in Figure 1. Deloitte Digital Twin Model classifies 
data, service, and connection as important components into four levels from simple to complex: 
L1 involves data flow from physical space to network space, L2 involves the opposite, L3 
represents the impact on cyberspace, and L4 represents the impact on physical space [29]. Im-
plementing these four levels enables bidirectional interaction to optimize and transform the 
physical world 
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Fig. 1. Schematic diagram of a five dimensional digital twin model 

2. Physical entity 

Digital twin technology combines virtual and real elements to improve digital precision by 
specifying physical space structure. Careful modeling of virtual objects based on physical 
scenarios can complicate physical structure. Designing and modeling physical room compo-
nents ensures accuracy of virtual model. Classifying physical room components into modular 
categories and matching modules in virtual model achieves functional specification. Different 
physical structures of digital objects lead to more accurate results closer to reality. 

2.1 Definition of physical entity 

Physical entity refers to the research object ontology and its auxiliary resources. Bevillaqua et 
al[30]. proposed a digital twin reference model, and the physical entity consists of physical 
industrial resources such as products, personnel, equipment, materials, processes, environment, 
facilities, etc.  

2.2 Processing of physical entity 

Jia [29] et al. proposed a two-step approach for decomposing physical entities based on MBES, 
involving function and use-based decomposition using spatial scale division, application sce-
nario division, and functional component division. Jia [29] et al. also suggested a 4C architecture 
for hierarchical partitioning of complex digital twins. However, this method has scalability 
issues, and to address them, Jia [29] et al. proposes an optimization of the complex digital twin 
model by integrating all attributes and data into a container that can fuse information in different 
scales and backgrounds. Figure 2 illustrates the multi scenario application of MBES from a 
simple digital twin to a complex digital twin workshop. 



 
Fig. 2. excerpted from simple digital twin to complex digital twin part II Multi scenario applications of 

digital twin shop floor 

3. Virtual Entity 

Virtual entities are the twins of physical entities in various aspects. They possess correspond-
ing characteristics of the physical entity studied and monitored in virtual space, including 
geometric shape, assignment of physical attributes, and simulation of behaviors such as 
change, evolution, response, and degradation. Personalized modeling can be performed based 
on the twin entity's characteristics to improve modeling logic and accuracy. We have summa-
rized the methods and corresponding tools used for modeling various parts of virtual entities 
in Table 1. 

3.1 Geometric modeling 

Geometric modeling visually represents the physical entity through its geometric shape, which 
is the foundation of virtual entity. It is not only used for shaping but also provides the structural 
integrity and data accuracy necessary for motion analysis, optimal design, virtual interaction, 
and more [4]. 

3.1.1 Geometric modeling technology.  

3D modeling of physical objects is now mature, and many software can meet most requirements 
for geometric modeling. Notable methods include point cloud modeling, which constructs a 3D 
structure of an object from laser-scanned dense points. Figure 3 is an example of a model built 
using point cloud modeling technology. Specialized industrial machinery software like Pro/E, 
CATIA, SolidWorks, and UG are also advantageous for 3D part construction and surface pro-
cessing. BIM technology and digital twins can provide a digital and integrated environment for 
road projects to efficiently carry out the entire process [5]. To realize a digital twin of a complex 
physical entity, the physical model is split into parts, and modeling technology is used sepa-
rately for geometric modeling before being assembled. 



 
Fig. 3. Example of point cloud modeling ，excerpted from 
https://blog.csdn.net/HW140701/article/details/78876507 

3.2 Physical Model 

Physical models describe physical properties of objects, analyze their properties, and support 
predicting entity changes [4]. Static physical models quantitatively model physical properties, 
states, and behaviors. For example, Spreitzer et al. established a digital twin model using close 
range aerial photogrammetry (SfM) to simulate parameters like density, volume, and moisture 
content of a wooden riverbed. Dynamic physical systems, such as heat conduction in mechan-
ical parts, require calculating nodes in the spatiotemporal solution domain. Cao [6] et 
al.established a reduced-order hydrodynamic model based on POD and dynamically analyzed 
hydrodynamic data of a blade under wake excitation. 

3.2.1 Technical methods for constructing physical models.  

Cao [6] et al. established a finite element model using FEM, which divides structures into unit 
grids for easy modeling. ANSYS, OpenFOAM, and SimScale are examples of finite element 
modeling tools.Figure 4 shows the finite element model established using ANSYS Cao et al. 
used OpenFOAM's SnappyHexMesh to generate a mesh based on the established finite element 
model. Bhogal[7] et al. used Ansys to establish a Finite Element Model and analyze cutting force 
and heat transfer during turning. They imported a tool model from Solid Works and determined 
stress, deformation, and thermal dispersion on the tool surface at different cutting depths. 



 
Fig. 4. Example of using ANSYS software，excerpted from 

https://www.padtinc.com/2021/01/06/ansys-mechanical-outputting-results-1-high-resolution/ 

3.3 Behavior Model 

Behavior models describe physical entity behaviors, and their accuracy impacts digital twin 
predictive results. Processing abnormal data is crucial for accurate behavior modeling. Dallel 
[8] et al. proposed a new method for coupling DT and VR to obtain a digital human body mod-
el with processed abnormal data. Gao [9] et al. developed a method for monitoring abnormal 
motion status of AUVs using dynamic models, complex network theory, and support vector 
machines. This method accurately identifies normal and abnormal conditions and classifies 
abnormal situations, implementing AUV motion status monitoring. 

3.3.1 Tools and Methods for Building Behavior Models.  

Simcenter Amesim, Ansys, Flexsim, and CarSim can implement digital twin behavior in 
virtual environments. Li et al. [10] simulated the energy accumulation and migration behavior 
of a petrochemical network model using the Gaussian KELM algorithm in MATLAB. Quin et 
al. [11] proposed a digital twin framework for robust control of robotic biological systems 
created in OpenSim based on SimBody. White [12] et al. developed a digital twin model with 
citizen feedback and traffic simulation using SUMO, connecting to Unity3D models via the 
Traffic Control Interface to enhance traffic patterns with different behavioral styles. 

3.4 Rule Model 

Rule models can empower complex experiences and knowledge through data mining, infor-
mation processing, knowledge measurement, and graphical mapping [4] Et al. The rule model 



can deduce changes to the physical entity at the knowledge level, enabling the final digital twin 
model to have intelligence and extract data according to historical experience and professional 
knowledge to contribute to further optimization and decision-making. Beke [13] Et al. used 
artificial neural networks for simulation and cost-effective development by processing time 
series input datasets. 

3.4.1 Method of Building Rule Models.  

Rule modeling technology extracts rules from historical data, operational logic, and profes-
sional knowledge for digital twinfunctions such as decision-making and optimization. Beke et 
al. [13] developed a digital twin for continuous pharmaceutical powder mixing processes using 
PAT and QbD guidelines. Hu [14] et al. have proposed a new GGS-CNN, which was trained and 
implemented in DTIRG for intelligent robot grabbing.Liu et al. [15] proposed a method to 
transfer DRL algorithms from digital twins to physical robots effectively. Tools such as Ansys, 
Simcenter Amesim, Demo 3D, and Simulink can construct rule models.  

Virtual entity 
Geometric models Physical model Behavioral models Rule models 

3D modeling technology： 
Finite element method：

ContextCapture 
 

Other 3D modeling 
tools:： 
Pro/E 

CATIA 
SolidWorks 

UG 
Combination of BIM and 

Digital Life 

Finite element method:  
 

Physical model building 
tools:  

ANSYS[7] 
OpenFOAM[6] 

SimScale 

Behavior modeling 
tools:  

SimScale 
ANSYS 
Amesim 
Flexsim 
Carsim 

Unity3D[12] 
 

Artificial Neural 
Networks[13] Con-
volutional Neural 

Networks [14] 
Deep Learning 

 
Rule model building 

tool: 
ANSYS 
Amesim 
Simulink 
Demo 3D 
Simcenter 

Table 1. Summary Table of Virtual Entity Modeling Technologies and Tools mentioned earlier 

4. Data 

Data plays a crucial role in digital twin technology, directly affecting prediction and monitoring 
accuracy as well as enabling optimization and control of physical entities. High-quality and 
accurate data is essential for reliable and stable digital twin results. This article explores data 
collection and processing technologies in digital twin technology. Figure 6 briefly shows the 
process of data interaction during the digital twin process 



 
Fig. 5. The process of data interaction  

4.1 Data Collection 

Sensors are crucial for data acquisition in digital twin technology, monitoring physical entity 
states and enabling the simulation of research variables. Zhao [16] et al. trained an artificial 
neural network model based on collected data to establish a fishing net digital twin model, 
while Yang [17] et al. constructed a virtual digital space of the ocean using sensors to detect 
seasons, climate, and ocean currents. Data visualization methods include charts, maps, and 
dashboards, allowing for intuitive observation and analysis by users. 

4.2 Data processing 

Data collected by sensors must be processed to extract useful information, including data 
cleaning, analysis, and mining. Data cleaning removes duplicates, noise, and fills in missing 
values, while data analysis is used to identify hidden patterns and trends. Data mining utilizes 
machine learning and statistical methods to gain insight from data. Zhang [18] et al. imple-
mented an intelligent production line for automotive MEMS pressure sensors utilizing data 
mining, machine learning, and statistical analysis to achieve process monitoring and traceabil-
ity management. Feng [19] et al. developed a gear health management method incorporating a 
high-fidelity digital twin model, using MMD loss in the advanced feature layer to reduce do-
main offset and improve deep learning model performance. 

5. Communication transmission 

Sensors collect raw data in a digital twin system, which requires processing to filter and store 
effective data. The digital twin model can simulate physical systems and provide prediction 
and optimization functions, while the controller enables remote monitoring and control. Digi-



tal twins enable precise management and optimization of physical systems, improving effi-
ciency and quality. Data transmission can be categorized into two types: communication be-
tween twin objects for system stability, and between twin and external systems such as CMS, 
MES, and EPR. 

5.1 Communication through data bus 

A data bus connects various devices and components in a computer network or system to enable 
data transmission, often using shared transmission. Digital twins rely on data buses like LANs, 
WANs, and the internet for data exchange between twin models. Wang [20] et al utilized a LAN 
to control a robot's joints for human welding operations while transmitting welding information 
from the welding space to the digital twin via the same LAN. In the DT, the workpiece model is 
preloaded and the robot model's joint rotation reconstructed from sensing data to reconstruct 
motion in physical space. 

5.2 Through TCP/IP protocol 

TCP/IP protocol is responsible for data transmission over a network, with TCP dividing and 
reassembling packets and IP processing addresses. The client sends a request and the server 
responds through TCP, while IP ensures that packets reach their destination [21]. Pires [22] et al. 
connected physical assets to a virtual model using customized Java applications and Modbus 
TCP/IP protocol, remotely accessing robots as long as they are in the same network. A JAVA 
application retrieves data from the Modicon M340 PLC using Modbus TCP/IP protocol and 
collects real-time conveyor system data. Communication between the application and the vir-
tual model uses remote API functionality in V-REP simulation environment for data transmis-
sion and exchange. 

5.3 Through CoAP protocol 

CoAP is a RESTful web application transport protocol designed for constrained nodes and 
networks that enables device functionality and data to become URI resources. These resources 
are fully integrated into the web, with low-power and low-latency communication capabilities 
[23]. Campolo[24]et al. used CoAP to study mobility in edge digital twin tracking MaaS applica-
tions, conducting experiments that demonstrated the request/response method allows interaction 
between clients and servers (IoT devices hosting resources). CoAP can also perform pub-
lish/subscribe monitoring of IoT resources by observing extensions. Requests with observation 
header options can be sent to CoAP resources via a Uniform Resource Identifier (URI). 

5.4 Through the MQTT protocol 

MQTT is a lightweight messaging protocol that uses publish subscribe operations for ex-
changing information between clients and servers, providing reliable connections with limited 
network bandwidth [25]. Mittal [26] et al. proposed creating Java agents or software robots with 
custom libraries to interact with digital twins and NEST cloud. The agent communicates with 
the twin through RabbitMQ message broker using MQTT protocol, sending commands to the 
NEST cloud using authentication code, PIN, and device ID from the NEST developer's API to 
assign tasks to the device, such as obtaining a list of devices and sending thermostat commands 
(e.g., setting target temperature setpoints or operating mode of HVAC).  



5.5 OPC UA  

OPC UA is an industrial communication standard for safe and reliable data exchange between 
monitoring systems, PLCs, actuators, and sensors [27]. OPC UA servers share data with clients, 
allowing clients to retrieve and analyze it. Redelinghuys et al. [28] proposed using Tecnomatix 
PS client subscription connections to OPC UA servers for data change events. PS model up-
dates continuously reflecting physical twins' changes based on sensor changes on OPC UA 
server. Digital Twins use cloud to check historical information stored from IoT gateways to 
cloud servers, displaying new information to users as each cycle progresses. 

6. Summary  

OPC UA is an industrial communication standard for safe and reliable data exchange between 
monitoring systems, PLCs, actuators, and sensors [27]. OPC UA servers share data with clients, 
allowing clients to retrieve and analyze it. Redelinghuys et al. [28] proposed using Tecnomatix 
PS client subscription connections to OPC UA servers for data change events. PS model up-
dates continuously reflecting physical twins' changes based on sensor changes on OPC UA 
server. Digital Twins use cloud to check historical information stored from IoT gateways to 
cloud servers, displaying new information to users as each cycle progresses. 
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