About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
sis 22(34): e5

Research Article

Multi-feature data fusion based on common space model and recurrent convolutional neural networks for EEG tristimania recognition used in upper limb rehabilitation exercises

Download1123 downloads
Cite
BibTeX Plain Text
  • @ARTICLE{10.4108/eai.14-9-2021.170954,
        author={Hudun Sun},
        title={Multi-feature data fusion based on common space model and recurrent convolutional neural networks for EEG tristimania recognition used in upper limb rehabilitation exercises},
        journal={EAI Endorsed Transactions on Scalable Information Systems},
        volume={9},
        number={34},
        publisher={EAI},
        journal_a={SIS},
        year={2021},
        month={9},
        keywords={EEG tristimania recognition, multi-feature data fusion, Xception network, RCNN, common space model},
        doi={10.4108/eai.14-9-2021.170954}
    }
    
  • Hudun Sun
    Year: 2021
    Multi-feature data fusion based on common space model and recurrent convolutional neural networks for EEG tristimania recognition used in upper limb rehabilitation exercises
    SIS
    EAI
    DOI: 10.4108/eai.14-9-2021.170954
Hudun Sun1,*
  • 1: Tai Chi Martial Arts Academy, Jiaozuo university, Jiaozuo, 454000, China
*Contact email: 352720214@qq.com

Abstract

Traditional tristimania recognition methods cannot accurately recognize the mood of patients, which cannot provide effective adjuvant therapy for rehabilitation. Therefore, this paper proposes a new multi-feature data fusion method for Electroencephalography (EEG) tristimania recognition. It combines common space model and recurrent convolutional neural networks to classify the tristimania group and control group. According to the phase lock value, the phase
synchronization functional network between electrode channels is constructed, and the functional connection modes of two kinds under different frequency bands are analyzed. The Xception network and LSTM are used as two non-interfering parts to extract two feature matrices from EEG tristimania signals. They are fused into a single feature matrix by merge algorithm. The single feature matrix is input into the recurrent convolutional neural networks (RCNN) for feature extraction and pooling. L2 regularized Softmax function is used as the classifier to complete the training and testing of RCNN. Finally, combining the Fisher score feature selection method and the classifier dependency structure, a low dimensional and efficient feature subset is obtained. Experimental results on public tristimania data sets validate that the proposed method has better effect in terms of accuracy and PLV compared with other strategies.

Keywords
EEG tristimania recognition, multi-feature data fusion, Xception network, RCNN, common space model
Received
2021-08-31
Accepted
2021-09-06
Published
2021-09-14
Publisher
EAI
http://dx.doi.org/10.4108/eai.14-9-2021.170954

Copyright © 2021 Hudun Sun et al., licensed to EAI. This is an open access article distributed under the terms of the Creative Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL