About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
sis 20(27): e4

Research Article

Neuro-Fuzzy Hybridization using Modified S Membership Function and Kernel Extreme Learning Machine for Robust Face Recognition under Varying Illuminations

Download1101 downloads
Cite
BibTeX Plain Text
  • @ARTICLE{10.4108/eai.13-7-2018.163575,
        author={Virendra P. Vishwakarma and Sahil Dalal},
        title={Neuro-Fuzzy Hybridization using Modified S Membership Function and Kernel Extreme Learning Machine for Robust Face Recognition under Varying Illuminations},
        journal={EAI Endorsed Transactions on Scalable Information Systems},
        volume={7},
        number={27},
        publisher={EAI},
        journal_a={SIS},
        year={2020},
        month={3},
        keywords={Illumination normalization, S membership function, face recognition, KELM},
        doi={10.4108/eai.13-7-2018.163575}
    }
    
  • Virendra P. Vishwakarma
    Sahil Dalal
    Year: 2020
    Neuro-Fuzzy Hybridization using Modified S Membership Function and Kernel Extreme Learning Machine for Robust Face Recognition under Varying Illuminations
    SIS
    EAI
    DOI: 10.4108/eai.13-7-2018.163575
Virendra P. Vishwakarma1, Sahil Dalal1,*
  • 1: University School of Information, Communication & Technology, Guru Gobind Singh Indraprastha University, Dwarka Sector 16-C, New Delhi-110078
*Contact email: dalalsahil22@yahoo.co.in

Abstract

The multifaceted light varying environment severely degrades the performance of person recognition using facial images. Here, the authors present a novel person identification method using hybridization of artificial neural network (ANN) and fuzzy logic concepts. An efficient illumination normalization method is presented with the help of a new modified S membership function. The proposed method of illumination normalization retains the large scale facial features as well as suppresses the variations related to change in light variations. Kernel extreme learning machine (KELM) which is a nonlinear and non-iterative learning algorithm of ANN is used for classification. Various kernel types and parameters are experimented to find the best choice for robust classification. To assess the performance of proposed hybridization, Yale and extended Yale B face databases have been used. Very promising results have been achieved which establish the worth of the proposed method.

Keywords
Illumination normalization, S membership function, face recognition, KELM
Received
2019-10-30
Accepted
2020-03-09
Published
2020-03-10
Publisher
EAI
http://dx.doi.org/10.4108/eai.13-7-2018.163575

Copyright © 2020 Virendra P. Vishwakarma et al., licensed to EAI. This is an open access article distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL