Research Article
Chinese fingerspelling recognition via gray-level co-occurrence matrix and fuzzy support vector machine
@ARTICLE{10.4108/eai.12-10-2020.166554, author={Yalan Gao and Cheng Xue and Ran Wang and Xianwei Jiang}, title={Chinese fingerspelling recognition via gray-level co-occurrence matrix and fuzzy support vector machine}, journal={EAI Endorsed Transactions on e-Learning}, volume={7}, number={20}, publisher={EAI}, journal_a={EL}, year={2020}, month={10}, keywords={Chinese fingerspelling recognition, gray-level co-occurrence matrix, fuzzy support vector machine, principal component analysis}, doi={10.4108/eai.12-10-2020.166554} }
- Yalan Gao
Cheng Xue
Ran Wang
Xianwei Jiang
Year: 2020
Chinese fingerspelling recognition via gray-level co-occurrence matrix and fuzzy support vector machine
EL
EAI
DOI: 10.4108/eai.12-10-2020.166554
Abstract
INTRODUCTION: Chinese deaf-mutes communicate in their native language, Chinese sign language which contains gesture language and finger language. Chinese finger language conveys information through various movements of fingers, and its expression is accurate and convenient for classification and recognition. OBJECTIVES: In this paper, we proposed a new model using gray-level co-occurrence matrix (GLCM) and fuzzy support vector machine (FSVM) to improve sign language recognition accuracy. METHODS: Firstly, we acquired the sign language images directly by a digital camera or selected key frames from the video as the data set, meanwhile, we segmented the hand shapes from the background. Secondly, we adjusted the size of each images to N×N and then switched them into gray-level images. Thirdly, we reduced the dimension of the intensity values by using the Principal Component Analysis (PCA) and acquired the data features by creating the gray-level co-occurrence matrix. Finally, we sent the extracted and reduced dimensionality features to Fuzzy Support Vector Machine (FSVM) to conduct the classification tests. RESULTS: Moreover, we compared it with similar algorithms, and the result shows that our method performs the highest classification accuracy which is up to 86.7%. CONCLUSION: The experiment result displays that our model performs well in Chinese finger language recognition and has potential for further research.
Copyright © 2020 Yalan Gao et al., licensed to EAI. This is an open access article distributed under the terms of the Creative Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.