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ABSTRACT
In this paper we propose a methodology based on Topogical
Data Analysis (TDA) for capturing when a complex system,
represented by a multivariate time series, changes its inter-
nal organization. The modification of the inner organization
among the entities belonging to a complex system can induce
a phase transition of the entire system. In order to identify
these reorganizations, we designed a new methodology that
is based on the representation of time series by simplicial
complexes. The topologization of multivariate time series
successfully pinpoints out when a complex system evolves.
Simplicial complexes are characterized by persistent homo-
logy techniques, such as the clique weight rank persistent
homology and the topological invariants are used for com-
puting a new entropy measure, the so-called weighted per-
sistent entropy. With respect to the global invariants, e.g.
the Betti numbers, the entropy takes into account also the
topological noise and then it captures when a phase transi-
tion happens in a system. In order to verify the reliability of
the methodology, we have analyzed the EEG signals of Phy-
sioNet database and we have found numerical evidences that
the methodology is able to detect the transition between the
pre-ictal and ictal states.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures; G.3 [Probability and Statis-
tics]: Miscellaneous; H.4 [Information Systems Appli-
cations]: Miscellaneous
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1. INTRODUCTION
A complex system can be generally described as a dynami-

cal system composed by a huge number of autonomous, but
interrelated and interdependent, entities that can be linked
both functionally and spatially. The dynamic linking forms
a dense network of interactions. Complex systems cannot
be decomposed by a single rule and their properties can not
be reduced to one level of description. They are in general
characterized by emerging features and behaviors that arise
from the interaction of their parts and cannot be predicted
from the properties of the parts. The science of complex-
ity deals with the following questions: how interactions give
rise to new unobserved behaviors and how to model complex
systems. In the past, two approaches were used for studying
complex systems: agent based model and simulation and dif-
ferential equations (both ordinary and partial). Because the
increasing of data volume associated to complex systems,
actually, two alternatives approaches are used: multivariate
time series [16] and complex networks [1]. In this paper we
intend to provide a methodology for representing complex
systems by multivariate time series and transforming the
signals into complex networks that are analyzed by topolog-
ical data analysis (TDA) and information theory [19, 15].
In order to minimize the effect of the noise in the signals
and to produce equivalence classes among patterns in the
EEG time series we segmented the multivariate time series.
TDA is an innovative approach for dealing with big-data, it
allows us to perform data-space reduction, and to identify
the higher order relations existing among the entities of a
complex system [7]. TDA has been largely used in several
fields, spanning from biology to social networks [14, 4]. The
paper is organized as follows: in Section 2 we introduce the
biological case study, in Section 3 we describe the method-
ology, in Section 4 we briefly remark the maths behind the
methodology and in Sections 6 and 7 we discuss the out-
comes.

2. CASE STUDY: EPILEPTIC BRAIN
Epilepsy is a chronic disorder of the brain that affects

people all over the world. It is characterized by recurrent
seizures, which are brief involuntary movements involving a
part of the body (partial) or the whole body (generalized).
Some episodes can be accompanied of loss of consciousness
and control living functions1. Epileptic seizures are defined
as sudden interruptions of brain functions due to an abnor-
mal, excessive or synchronous activity of a neuronal ensem-

1http://www.who.int/en/
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ble. Most of the people affected by epilepsy can control it by
assuming anti-epileptic drugs, about 30% [2] of the epilep-
tic patients are drug-resistant: 60% of them can undergo
resection surgery, for the others alternative therapies, such
as devices capable to predict the onset of epileptic seizures
thus controlling them, have to be taken into account. In de-
veloping devices, it is fundamental cosidering that brain is
a complex self-adaptive system. The brain dynamics under-
goes through several phase transitions generating complex
behaviors [17, 8]. This is the reason why the study of time-
varying brain signals, such as EEG (or intracranical elec-
troencephalography (iEEG)), functional magnetic resonance
imaging (fMRI) and magnetoencephalography (MEG), is
both the key-aspect for finding new insights and the highest
barrier. In studying epilepsy, one of the main open ques-
tion is the definition of the so-called pre-ictal state, i.e. the
state before the onset of an epilepetic seizure, which is the
ictal state, and the detection of the phase transition between
the two states. In the last years, several studies based on
non-linear analysis proved that the transtion between the
pre-ictal and the ictal state is not an abrupt change [11,
9]. This outcame suggests that the detection of the pre-
ictal state minutes or hours before the onset of an epileptic
seizure can be possible. Assessing the pre-ictal state (and its
features) and the transient pre-ictal to ictal can be crucial
in understandng the underlying transition mechanisms and
the ictogenesis which are necessary in developing prediction
algorithms [10]. The study of epilepsy as a complex dy-
namical system can be faced up by analyzing the EEG time
series. As far as we know, there is not a universal machin-
ery able to identify the onset of the phenomena, due to the
subjectivity of the crisis and the noise affecting the signal;
however in the past decades, several attempts were made:
linear and non linear analysis, univariate and multivariate
techniques, as well as methods from different scientific fields
such as time-frequency domain, dynamical system domain,
chaos theory and even graph theory [17, 13].

3. METHODOLOGY
Complex dynamical systems arise as mathematical de-

scriptions of natural phenomena. Studying the time evo-
lution of such systems provides broad insight into problems.
A wide spectrum of behaviors is seen, from straightforward
limit cycles to chaotic behavior stemming from sensitivity
to initial conditions. However, nature is affected by noise
that often obfuscates the true behaviors. In order to cap-
ture the behavior, we intend to represent the system by sim-
plicial complexes. The construction of simplicial complexes
from real data is only partially affected by the noise, while
the topological invariants (i.e., the Betti numbers) are pre-
served [6]. The protocol we propose consists in the following
steps:

1. Segmenting the multivariate time series. The length of
the windows is driven by the method proposed by [18]
or similar approaches.

2. For each window, compute the Pearson correlation co-
efficients (or partial correlation) matrix ρ(i, j).

3. Threshold the matrix by selecting the correlation co-
efficient statistically significant (p− value < 0.05) and
greater than a threshold θ = 0 ρ(i, j) > θ.

4. Represent the thresholded matrix as a weighted edge
list.

5. Use jHoles for computing clique weight rank persistent
homology.

6. Compute and plot the weighted persistent entropy.

4. SIMPLICIAL COMPLEXES
A simplicial complex is a mathematical object used to

generalize the idea of a triangulation of a surface. It is made
of assembling units called simplices, glued together following
some rules we shall see in a while.
For an integer n ∈ N, an n-dimensional simplex is the con-
vex hull of n+ 1 points in general position. For example, a
0-dimensional simplex is just a single point; a 1-dimensional
simplex is a segment (containing both its ending points, that
are the two 0-simplices that determine it); a 2-dimensional
simplex is a triangle: it is determined by its three vertices (0-
simplices) say A, B, C, and consists of the closed area deli-
mited by its three edges AB, BC, AC, which themselves are
1-simplices. Similarly, a 3-dimensional simplex is a generic
tetrahedron: it has four 0-simplices, six 1-simplices, and four
2-simplices (the triangles that constitute its surface). Note
that given an n-dimensional simplex S (i.e. n + 1 points
determining it), every subset of k+ 1 ≤ n+ 1 points is itself
a k-dimensional simplex T ; in this situation, we say that the
subcomplex T ⊆ S is a subface of S. Then a simplicial com-
plex is a family K of complexes with the properties that: (1)
every subcomplex of a member of K is still a member of K,
and (2) the intersection of two complexes in K is again in K.
These two requests essentially prevent complexes ‘to have
no borders’ (condition (1)), and tell how to glue simplexes
together to form a complex (condition (2)): they are allowed
only to share an entire common subface. The dimension of
a simplicial complex is the maximum among the dimensions
of its complexes. For example, a 0-dimensional simplicial
complex is just a collection of points, while a 1-dimensional
simplicial complex is a collection of points with some seg-
ments connecting some of them, i.e. it is nothing more than
a graph. A filtered simplicial complex (or a filtration on a
simplicial complex) is a finite, ordered, family of simplicial
complexes, each of them contained in the previous one; one
can intuitively think of it as the finite time steps required to
build the last, final, simplicial complex. Given a weighted
graph, there are several ways to make a filtered simplicial
complex out of it; here we expose the clique weight rank pro-
cedure, implemented by the jHoles software [3]. First, we
look for the maximal cliques (i.e. complete subgraphs) in
the graph. For each of them, we note its cardinality, say n,
and we add to our simplicial complex the (n−1)-dimensional
complex determined by its points, as well as all of its sub-
faces (i.e. subcomplexes, i.e. subcliques). Then, we look
for the (n− 1)-cliques that are not already been considered
(i.e. that are not contained in any previous found n-clique),
and we proceed as before. In the meantime, when we find
a maximal clique, we attribute a weight to it, namely the
minimum among the weights of the edges in the clique, and
this value will be used to decide at which step of the filtered
simplicial complex the clique will appear.
The upper part of Figure 1 shows an example of this pro-
cedure. The weights of the edges of the starting graph are
listed in the set W in increasing order.



Figure 1: Example of clique weight rank persistent
homology. Top: clique complexes construction from
a weighted undirected graph. The maximal cliques
are listed by the Bron-Kerbosch algorithm. Bottom:
Betti barcodes obtained during the computation of
persistent homology [7].

4.1 Homology, persistent homology and bar-
codes

The homology of a simplicial complex, and the persistent
homology of a filtered simplicial complex, are very effec-
tive methods to study networks and to discover relations
between nodes in them. The explicit definition of these ob-
jects is beyond the scope of this paper, and here we only give
an intuitive idea of them, that will suffice for making this
paper self-consistent. Given a filtered simplicial complex of
dimension d ∈ N, let F be the set of its filtration values. For
every j ≤ d, the software jHoles computes the so-called ho-
mology group Hj , whose elements are called j-dimensional
cycles. Each cycle is also equipped with an interval (also
called line) of the form either [a, b] or [a,∞) for a, b filtration
values, that represents the filtration values of birth (time a)
and death (time b, or ∞) of the cycle. Intervals of the form
[a, b] correspond to topological noise; while [a,∞) represents
a persistent topological feature (a cycle that is born at time
a and dies at time∞). If m = max{F}+1, from now on we
will denote by [a,m] such an otherwise unbounded interval:
from the point of view of the filtration F , saying that a cycle
stands up to time m or up to time∞ is the same. The union
of the lines associated to j-dimensional cycles is called j-th
Betti barcode. The “infinite” persistent barcodes represent
the persistent Betti numbers βi, i ∈ N.

5. J-WEIGHTED PERSISTENT ENTROPIES
Let d be the dimension of the simplicial complex. For

every j ∈ N, j ≤ d, we consider the j-th homology space Hj ,
and let Nj be the number of lines (both noise and persistent
topological features) belonging to Hj . We set li = (bi − ai)
to be the length of the i-th topological feature belonging

to Hj . Now we let Lj = Σ
Nj

i=1li be the total length of the

j-th barcode, and Pi = li
Lj

be the frequential probability

for li and Lj . Finally, we define the j-Weighted Persistent
Entropy WHj that is an extension of the Persistent Entropy
H defined in [5] as

WHj = −cjΣ
Nj

i=1P (li) · log(P (li)). (1)

where cj = 2j . Note that two are the main differences be-
tween H and WHj : the latter is computed for each j-th
homological space, while H is computed over the entire set
of lines. The second difference is in the cj coefficient: it em-
phasize the contribution of higher Homological groups on
the entropy. Note that if N = 1, then the entropy is 0, while
it can be proved that if N > 1 then the entropy value is
maximum if the barcode is formed by lines having the same
length.

6. RESULTS
In this section we report on the application of the method-

ology described in Section 3 to the EEG signals stored in
the PhysioNet database and freely accesible by the web-
site 2. The EEG signals used in this study were collected at
the Children’s Hospital Boston, and they consists of EEG
recordings from pediatric subjects with intractable seizures.
Subjects were monitored for up to several days following
withdrawal of anti-seizure medication in order to charac-
terize their seizures and assess their candidacy for surgical
intervention. Because of the limitation on the number of
pages, we report only on two signals, respectively sigI and
sigII (see Figure 2). We applied the procedure described

Figure 2: Example of EEG signals: sigI is on the
top, while sigII is on the bottom

in [18] to both signals and we found the optimal size of
the segmentation is equal to 120secs, then we segmented
the whole ECG track in 30 windows. For each window we
computed the partial correlation coefficients and we used as
threshold θ = 0. The upper triangular part of each matrices
was parsed and saved as edge list, hence the edge list was
used as input for jHoles. jHoles provides the Betti barcodes
both in graphical and textual formats, and we used the lat-
ter for computing the weighted persistent entropy over each
homological dimension (H0, H1, H2, and H3). We plotted
the WHj values for each matrix (see Figure 3).

7. CONCLUSIONS
2http://www.physionet.org



Figure 3: Weighted Persistent Entropy for the ho-
mological group H0. Top: Weighted persistent en-
tropy for the sigI, the marked peak corresponds to
an ictal state. Bottom: Weighted persistent entropy
for the sigII. In the upper figure a phase transition
is well evident.

The two signals have been previously classified by the Phy-
sioNet users. Respectively, sigI corresponds to an individ-
ual affected by epilepsy, while sigII belongs to an healthy
patient. This classification also is identified by our metho-
dology. The analysis of the persistent entropy reveals that
in WH0 of sigI a phase transition occurs (see the upper
picture in Figure 3). The topological interpretation is that
among the windows with id = 20, 21 and 22, the number of
connected components tends to be one and the topological
noise is minimized (all the features are persistent). Before
and after this period, the number of connected component
is higher and the barcodes are noisy. These three windows
correspond exactly to the transition from the pre-ictal state
to the ictal state. In both signals, Betti numbers for higher
dimensions are present (β1, β2, β3) but in these signals the
corresponding barcodes do not change significantly. As fu-
ture work we plan to use this methodology and to investigate
this kind of natural complex phenomena by following the
S[B] paradigm. S[B] allows to model simultaneously both
the local and the global behaviors of complex systems [12].

8. ACKNOWLEDGMENTS
We acknowledge the financial support of the Future and

Emerging Technologies (FET) programme within the Sev-
enth Framework Programme (FP7) for Research of the Eu-
ropean Commission, under the FP7 FET-Proactive Call 8 -
DyMCS, Grant Agreement TOPDRIM, number FP7-ICT-
318121.

9. REFERENCES
[1] R. Albert and A.-L. Barabási. Statistical mechanics of

complex networks. Reviews of modern physics,
74(1):47, 2002.

[2] P. N. Banerjee, D. Filippi, and W. Allen Hauser. The
descriptive epidemiology of epilepsy—A review.
Epilepsy Research, 85(1):31–45, July 2009.

[3] J. Binchi, E. Merelli, M. Rucco, G. Petri, and
F. Vaccarino. jholes: A tool for understanding

biological complex networks via clique weight rank
persistent homology. Electronic Notes in Theoretical
Computer Science, 306:5–18, 2014.

[4] C. Carstens and K. Horadam. Persistent homology of
collaboration networks. Mathematical Problems in
Engineering, 2013, 2013.

[5] F. Castiglione, E. Merelli, M. Pettini, and M. Rucco.
Correlation between topological complexity and
entropy in idiotypic network. 2014.

[6] A. Chernov and V. Kurlin. Reconstructing persistent
graph structures from noisy images. Image-a.=
Imagen-a., 3(5):19–22, 2013.

[7] H. Edelsbrunner and J. Harer. Persistent homology-a
survey. Contemporary mathematics, 453:257–282,
2008.

[8] L. D. Iasemidis and J. C. Sackellares. REVIEW :
Chaos Theory and Epilepsy. The Neuroscientist,
2(Ldi):118–126, 1996.

[9] M. Le Van Quyen, J. Martinerie, M. Baulac, and
F. Varela. Anticipating epileptic seizures in real time
by a non-linear analysis of similarity between EEG
recordings. Technical Report 10, Laboratoire de
Neurosciences Cognitives et Imagerie Cérébrale
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