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ABSTRACT

Biological network topologies are known to be robust despite
internal and external perturbances. Motifs such as feed-
forward loop and bifan have been marked to contribute to
structural and functional significance. While network char-
acteristics such as network density, average shortest path,
and centrality measures etc., have been well studied, modu-
lar characteristics have not been explored in similar detail.
Motif connectivity might play a major role in regulation un-
der high perturbations. Connected motif abundance can
skew network robustness as well. To test this hypothesis,
we study the significance of the two connected feed-forward
loop motifs using random forest regression modeling. We de-
fine thirty eight network features, fifteen of which are static
and dynamic features and the other twenty three are two
feed-forward loop connected motif features. We identify sig-
nificant features among these using random forests regres-
sion and create models that can be used to train and predict
the robustness of the biological networks. The performance
of these models is measured using coefficient of determina-
tion metric and the significance of the features themselves is
characterized using feature importances. Our experiments
reveal that connected feed-forward loop motifs do not con-
tribute to the robustness of network when models are created
with all 38 features. For models with only connected motif
features, the performance of a specific rhombus motif under
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high loss stands out.
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1. INTRODUCTION

Motifs are often attributed to be one of the reasons for ro-
bust biological systems. A repetitive structure that occurs
with a higher statistical significance in real networks than
in random networks is termed to be a motif. In the past,
researchers have identified feed-forward loop (FFL) motif to
be an important motif in terms of abundance [13]. Fur-
ther, functional significance such as response time speed-up
and slow down has been attributed to FFL motif [12]. FFL
structure is intriguing not only for its role in biological func-
tionality but structurally as well Figure 1(b). It offers two
ways of regulating the gene node (C') via two different tran-
scription factor (A, B) nodes. In communication scenario,
this becomes crucial when there is a network failure but in-
formation still needs to be transmitted. It is likely that the
presence of higher FFL motifs will lead to better informa-
tion transmission. In this work, we take a step further to
study the connectivity between FFL motifs.

For the first time, this work aims to study the impor-
tance of the abundance of connected motifs. We use dis-
crete event simulations and machine learning techniques to
create a model, train and learn the feature data and pre-
dict robust behavior of biological network topologies. Dis-
crete event simulations assist in modeling dynamic behavior
of network interactions (information flow among the nodes
in a network) under controlled conditions such as channel
noise and congestion-based information loss. We assume
that features in a biological network can be ranked. Does
higher abundance of a connected motif pattern mean a ro-
bust network? Which of the considered network features
contribute to robustness? Which machine learning model
can accurately predict the robust behavior of biological net-
work topologies? We explore these questions in the following
sections. Answering these questions will reveal insights to
the working of robust biological network topologies leading
us to engineer specialized networks which are resilient under

BICT 2015, December 03-05, New York City, United States
Copyright © 2016 ICST
DOI 10.4108/eai.3-12-2015.2262520



heavy perturbations. Section 2 presents the methodology
followed in this work. The definition of robustness varies
from context to context. The metrics studied by researchers
are predominantly static in nature [2, 3] as they do not con-
sider the dynamic information flow within the network. [2]
provides an in-depth review of existing metrics to measure
robustness. None of the metrics consider features based on
motifs or even connected motifs. Robustness, in our work,
is measured in the aspect of successful information trans-
mission as modeled by a discrete event network simulator.
To this effect, we define network robustness as the ratio be-
tween the total number of packets received at the sink nodes
to the total number of packets sent from the source nodes.
We term this metric as packet receival rate. Packet receival
rate is a dynamic metric as it models the network behavior
at different perturbed conditions. This experiment setup
has been detailed in our prior work and can be noticed in
[11].

2. METHODOLOGY

The methodology followed in this work is illustrated in
Figure 1. Subnetworks extracted (Section 2.2) from E. coli
transcriptional regulatory network are passed to network
simulator platform NS-2 (Section 2.3) to generate packet re-
ceipt rates and feature values are determined using Python
programming language [18]. As a standard practice, fea-
tures are scaled between 0 and 1. Section 2.4 describes Data
processing followed in this experiment is described in Sec-
tion 3.1. After processing the data in the correct format
(as mentioned in the Step 1 in Figure 1) random forest re-
gression machine learning technique is applied for feature
ranking, and output prediction. Mean squared error metric
is used to determine the optimal number of estimators (a
key measurement used to estimate random forests) number
(described in Section 3.2). Before feature ranking is actually
performed, we perform feature selection which is a process to
reduce feature set (from a thirty eight feature set). Features
are ranked using feature importances (a technique used to
determine feature significance in regression trees). Section
3.2 details the parameters used for creating random forests
regression models followed by the performance of vertex-
shared motif features.

2.1 Contributions

The major contributions of this work are as follows:

1. Define vertex-shared motifs which are potentially re-
sponsible for biological functionalities.

2. Using random forests regression to select important
biological network characteristics.

2.2 Transcriptional subnetworks

FEscherichia Coli and Saccharomyces cerevisiae are con-
sidered to be model organisms in the biological networks
research community. For this work, we extract transcrip-
tional subnetworks from FEscherichia Coli to understand bi-
ological network characteristics and motif interactions from
a structural perspective. To this effect, subnetworks of dif-
ferent sizes are considered: 100, 200, 300, 400, and 500 (size
represents the number of nodes in a network). For each
size, 1000 transcriptional subnetworks are extracted using
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GeneNetWeaver software [15]. During subnetwork extrac-
tion, GeneNetWeaver retains critical biological characteris-
tics such as modularity. Specifically, these modules are re-
sponsible for distinct biological functionalities. Direction of
the edges within these networks is retained as it captures reg-
ulation information of genes by transcription factors. Net-
works that are disconnected are not considered for further
analysis. Self-edges (node with edges directed towards itself)
in each network are discarded and the remaining network is
reconstructed. This step pruned the dataset to 947, 943,
957, 932, and 941 networks for 100, 200, 300, 400, and 500
! network sizes respectively. This dataset is then used to
explore network dynamics in two ways: a) model interac-
tions using NS-2 (Section 2.3) and b) determine structural
features from a static and dynamic perspective (Section 2.4
and Section 2.5). We study the significance of these fea-
tures using machine learning techniques, specifically using
regression modeling. This helps us identify the variation in
feature importance from one network size to the other and
under several lossy conditions.

2.3 Modeling network dynamics using NS-2

Network simulator platform, NS-2, allows researchers to
explore the network characteristics. When compared to
conventional graph analysis tools (UCINET, Gephi, Pajek,
NodeXL etc.), NS-2 gives the advantage of exploring a com-
plex system dynamically. NS-2 also models channel noise
resembling perturbances within a biological system unlike
other graph analysis tools. Previously, we mapped the prob-
lem of information flow in a biological network to that in a
wireless sensor network [6, 8, 9]. This setup helps us un-
derstand the characteristics of biological networks uniquely
using a framework used for wireless sensor networks. Follow-
ing which, we established NS-2 as a robustness framework
for biological networks. In a NS-2 network simulation, in-
formation is transmitted across the network via nodes and
edges. Each node sends information in terms of packets

1871 networks were used for 500 network size at 10% loss.
941 networks were used for all other loss scenarios for 500
network size.



across its outgoing edges and these packets are collected at
sink nodes. Transcription factors (also considered as source
nodes here) and genes (also considered as sink nodes here)
are both represented as nodes and the interactions among
them are represented via edges. Packet transmission in each
network is studied at various loss models: 10%, 20%, 35%,
50%, 60%, 75% and 90%. Packet receipt rate in the network
is measured as the percentage of the number of packets re-
ceived at sink nodes to the number of packets sent by all
source nodes. Networks with higher packet receipt rate are
considered to be more robust. Packet receipt rates of the
networks range in between 0 (least robust) and 100 (most
robust). Source nodes are considered to transmit or forward
information (through packets) and sink nodes only receive
the information. This situation is similar to a transcription
network where gene is regulated (receiving information) by
transcription factor(s).

2.4 Structural features

In order to understand the features contributing to higher
network robustness, we studied several network character-
istics. While some of these characteristics such as average
shortest path, network density, and betweenness centrality
have been explored by researchers under the context of ro-
bust networks, our definition of what robust is places empha-
sis on the study of network dynamics. In our earlier work, we
identified fifteen different network features and ranked them
using unsupervised learning techniques [10], [11]. These fea-
tures include static characteristics such as average shortest
path, network density, degree centrality and dynamic char-
acteristics such as patterns derived from FFL-based direct
and indirect paths 2. These dynamic characteristics are de-
rived after looking at the information flow using NS-2 simu-
lation platform. This helps us identify the paths that were
heavily used to transmit information and if these paths are
related to FFL motifs. Some of the features use specific ter-
minology from information communication theory (such as
packet transmission).

The order of the features studied in this work is as follows:
1) network density, 2) average shortest path, 3) average de-
gree centrality of the network, 4) transcription factors per-
centage, 5) genes percentage, 6) percentage of source to sink
edges, 7) abundance of direct FFL motif edges, 8) abundance
of indirect FFL motif edges, 9) percentage of FFL direct
edges that contribute to successful packet transmission, 10)
percentage of FFL indirect edges that contribute to success-
ful packet transmission, 11, 12) number of direct and indirect
FFL edges compared to the total successful (that contribute
to successful packet transmission) direct and indirect edge
paths in the network, 13) percentage of total edges in the
network that participate in FFLs, 14) percentage of total
edges that are actually FFL direct edges, 15) percentage of
FFL direct edges that are source to sink edges. While our
earlier work focused on identifying the impact of FFL, this
work is focused on determining the impact of two FFLs that
are connected. To this effect, we defined twenty three dif-
ferent connected FFL features that capture the abundance
of connected FFL structures which are described in the fol-
lowing section. In total, we study thirty eight features to

2Consider an FFL ABC where C is regulated directly by A
and indirectly by A via B. Here, the edge A—C'is considered
to be a direct FFL edge and edge A — B — C' is considered
indirect FFL edge

model the regression predictor. Hereafter, we refer to the
connected feed-forward loop motifs as vertex-shared motifs.

2.5 Vertex-shared motif connectivity

It has been argued that interactions among modules are

responsible for specific functionality in biological networks
[4]. This is a deviation from another standpoint which states
that the abundance of some structural patterns contributes
to network robustness. While it is imaginable for both views
to be correct, here we explore the structural role of specific
modules in network robustness. Modules are essentially con-
nected motifs at work. Here, we explore the vertex-shared
feed-forward loop motifs for their structural role in attaining
biological network robustness. In order to understand the
significance of connected motifs, we first identified all possi-
ble ways two feed-forward loop motifs could be connected.
Following the identification, we determined the abundance
of each pattern in the above mentioned transcriptional net-
works.
The motif patterns can be divided into three categories first
of which is bow-tie where one vertex is shared between two
FFLs, second being rhombus where two vertexes are shared
between two FFLs and third category being bi-triangle where
all three vertexes are shared by two FFLs. All these pat-
terns along with their respective abundance values are tab-
ulated in Tables 1 and 2. Out of eighteen possible rhom-
bus patterned motifs, there are six instances (RH-1/RH-
8, RH-3/RH-14, RH-4/RH-11, RH-6/RH-17, RH-9/RH-13,
RH-12/RH-16) where two patterns are found to be struc-
turally isomorphic. All the isomorphic structures are shown
in Table 3.

3. RANDOM FOREST REGRESSION

Machine learning techniques prove quite useful in iden-
tifying significant features among a list of several features.
Different strategies are employed for this task of significant
feature identification. To perform machine learning tasks,
we use the widely recognized scikit [14] module in Python.
The aggregation of features defined in Section 2.4 and Sec-
tion 2.5 combine to a total of thirty eight features. Abun-
dance of connected motifs does not always contribute to
robust network behavior. Data for connected motif abun-
dance for different network sizes is suppressed here due to
space considerations but provided in Section 6. The test
for the correlation of feature abundance with robustness is
performed in Section 3.4.

3.1 Data

Data is constructed similar to the procedure followed in
our earlier work [11]. Each network is represented as a com-
bination of feature values, feature ids and output labels. The
output labels are determined using NS-2. In total, thirty
eight features are studied in this experiment. These include
the twenty three vertex-shared motif features introduced
earlier apart from the fifteen features presented in [11]. As
suggested in [7], we scale each feature between 0 and 1 for
all the samples considered to create a model. Each network
is represented as a combination of output labels and thirty
eight network characteristics. This combination is known
as a feature instance, in machine learning terminology. The
results from NS-2 are used as output labels and the corre-
sponding features are calculated using networkX [16] mod-
ule in Python programming language. In our previous work



Table 1: Abundance of bow-tie and bi-triangle mo-
tifs in E. coli transcriptional network.

Table 2: Abundance of rhombus motifs in E. coli
transcriptional network.

Pattern ID Symbol Abundance Name Symbol Abundance
BW-1 X 139827 RH-1 $ 623
BW-2 X 110505 RH-2 e 553
BW-3 g 730 RH-3 é 788
X o S
RH-4 93
BW-5 g 1412 @
g RH-5 7
BW-6 1393 e
RH-6 9
BT-1 & 17 e
BT-2 & 139 RH-7 69299
BT-3 & 4 RH-8 é 516
o <
RH-9 58364
BT-5 & 3 é
RH-10 200
[10, 11], we considered the problem of ranking features to e
be an unsupervised one and used ANOVA 3 F-value to de- RH-11 656
termine the significant features. But here, we consider the
problem to be a supervised one and retained the output la- RH-12 30

bels (range between 0 and 100) as floating points. In order
to use classification techniques, one would have to group the
output labels into bins which would mask the real data. Re-
gression techniques are best suited for continuous data as
output labels to predict new data. In order to avoid points
that are equidistant from all the clusters (as noted in [11]),
we increased the sample size for each network size from 100
to 1000 networks. By treating the problem as supervised
instead of unsupervised one, we further take advantage of
the output labels from NS-2. Further, we introduce feature
selection here an improvement from our earlier work where
the entire feature set was used to rank features. Before cre-
ating regression model, data is split into training and testing
data in 75:25 ratio. Data split step is a common practice in
machine learning tasks to ‘train’ the model on training data
during which the model ‘learns’ the data and testing is per-
formed on the test data. The accuracy of regression models
presented in Figure 3 is based on testing of model created
on the test data of all the 38 feature set.

3.2 Regression modeling

Firstly, network characteristics that are understood to
capture the network robustness are defined. In our exper-
iment, we have considered two scenarios, first one with a
total of thirty eight features are considered in order to cap-

3analysis of variance

ture the network dynamics, and in second case twenty three
features formed by the connected feed-forward loop motifs.
However, before calculating an estimator that can be used
to predict the performance of new network data, features
need to be pruned. Some features might be correlated with
each other and some might display higher variance than the
rest.

We considered different feature selection methods to achieve
the need of feature pruning. Randomized PCA was consid-
ered but ignored since it does not exploit the output label
data to minimize feature space. LDA was also considered
before being discarded. To this effect, feature selection step
is performed using random forests with regression. Linear
regression models such as Lasso and ElasticNet were consid-
ered before we discarded them for poor performance as mea-
sured by the coefficient of determination *. Recursive feature
elimination techniques (with and without cross validation)
were considered as well but were abandoned due to poor co-
efficient of determination values. These approaches involve
removing one feature at a time and determining model per-
formance on the remaining feature set at each step. The

4Coefficient of determination values were close to 0, far from
being optimal.



Table 3: Isomorphic rhombus motifs in E. coli tran-
scriptional network.

Name Symbol

RH-1/RH-8 %ﬁ
RH-3/RH-14 @%
RH-4/RH-11 j@;ﬂ@
RH-6/RH-17 ;@;3@
RH-9/RH-13 ;é;@
RH-12/RH-16 Q@

feature that impacts the model the best (i.e., model per-
formance suffers upon that feature removal) is retained for
future use. Random forests are used to solve classification
and regression problems. The functioning of random forests
is described in detail in [1].

Random forests is an ensemble machine learning technique
which uses several trees (estimators) to predict the outcome
of test data. A tree is constructed from sample data selected
from the training data. At each terminal node of the tree,
m features are selected out of the total features and a best
feature is identified for the tree to be split at. The tree is
then split into child nodes. This is repeated until the se-
lected sample size from the training data is the least. By
using several trees and averaging the predictions, the vari-
ance across the trees is reduced. Mean squared error (MSE)
is used to determine the best number of estimators (number
of decision trees) used in the random forests algorithm. Dif-
ferent number of estimators such as 10 to 100 in steps of 5
are used in creating different random forest models. MSE is
determined for each estimator and the average of the num-
ber of estimators is used as the MSE value for that specific
estimators’ number. The variation in MSE after feature re-
duction is illustrated in Figure 2 (a) for one single case of
network size 400 nodes at 90% loss and can be noticed that
MSE is lowest when the number of estimators used in the
random forest estimator is 70, The estimator for which MSE
is the least is selected for calculating feature importances.
In Figure 2 (b) for feed-forward loop connected motifs model
for network size 400 nodes at 90% loss, we can notice that
before feature reduction MSE is lowest when the number of
estimators used in the random forest estimator is 95. De-
tailed explanation for the feature importances is left out due
to space considerations [1]. At every run, feature impor-
tances, coefficient of determination and corresponding mean
squared error change due to the randomization in the al-
gorithm. To negate this, we execute the entire process for
hundred runs and take the average of the respective values.
Our experiments reveal that the importance of features de-
pends heavily on network size and loss it entails over time.
Average of feature importances is used as a heuristic to se-
lect subset of thirty eight features. All the features with
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Figure 2: Mean squared errors (MSE) at different
estimators for 400 network size at 90% loss. Mea-
sured for the model with 38 features and 23 fea-
tures respectively. Errorbars capture the variation
of MSE across hundred test runs. Note that the
Y-axis does not start at 0. Lower MSE is better.

feature importance values greater than and equal to the av-
erage feature importance value are selected to model the
final regressor for prediction.

3.3 Feature reduction

Coefficient of determination (COD) is used as a metric to
measure a model’s performance. For each of the thirty five
random forest models, COD is determined before and after
feature reduction. Each random forest regression model uses
X number of estimators as shown in Figure 2. Feature im-
portance of all the features is determined by averaging the
total reduction in node impurity ® across X estimators. We
then create a random regressor to predict outcomes based
on the model with reduced feature set which is tested using
test data set.

COD measures the performance of predicted values by
the model when compared to the real values. Good regres-
sors will have a COD value close to 1 and the bad ones will
have a COD close to 0. As evident from Figure 3, perform-
ing feature selection to reduce the feature set as explained
in Section 3.2 does not improve the model accuracy. The
majority of the models with all 38 features perform better
than the models with a reduced feature set. The figure illus-
trating COD performance for models with 23 vertex-shared
motif features is omitted as it follows similar trend.

Figure 4(a) presents the number of features selected by the
feature selection process from all thirty eight features. It can
be observed that the maximum number of features selected
as important are 16 for the network size 200 at 50% loss and
the least number of features that are selected as important
are 3 for network 400 at loss 90%. At high loss (90%), few
features (< 6) are responsible for network robustness.

Figure 4(b) shows important features selected from vertex-
shared motifs for all network sizes at different loss scenarios.
The number of significant features varies between 3 and 9.

Sas used in scikit-learn toolkit



At high loss (90%), few features (< 5) are responsible for
network robustness.

3.4 Feature value correlation with robustness

In order to test the hypothesis if high feature values di-
rectly correlate with high robustness, we perform the fol-
lowing tasks. These tasks are executed at a network level.
That is, significant features are identified for all models at
different loss types for a given network size.

1. First, we identify the top five features using random
forest regression (feature importance as a metric).

2. We then calculate the number of times each of the
features occurs in the top five ranks at different loss
scenarios.

3. Further, we determine the mean of each feature for
a given model and identify the top five features with
highest mean.

4. We then compare these features with the features ob-
tained in second step.

As a result, we found no correlation (direct or inverse)
between feature value and its importance. Among the mod-
els with all 38 features, gene percentage, direct FFL edge
abundance, FFL indirect edges that participate in success-
ful packet transmission to sink nodes, and the occurrences
of direct edges in feed-forward loop motif (IDs 6, 8, 11, 12
respectively in Figure 5) are strong indicators of robustness.
Apart from these features, network density, average shortest
path, average degree centrality, and percentage of transcrip-
tion factors (IDs 0, 1, 2, 3) also correlate to robustness rela-
tively well. It is important to note that certain features make
their impact distinctively in specific network sizes or at spe-
cific loss scenarios. This can be attributed to the fact that
these specific features might be expressed more during the
network extraction step (Section 2.2). The distribution of
feature importances (with feature IDs mentioned earlier) de-
termined using random forest regression is shown in Figure
6. Each feature contains of hundred test runs to normalize
the variations in feature importances due to randomization
in regression algorithm. Outliers in the dataset are points
that do not occur in the range of top and bottom whiskers
and are identified by +.

4. VERTEX-SHARED MOTIFS

The importance of features as determined in Section 3.2
is charted in Figure 5. Heat maps are generated for all the
networks at losses 10%, 20%, 35%, 50%, 60%, 75%, and
90%. Figure 5(a) represents one such case at 60% for model
created with all 38 features. At one glance, it can be ob-
served that features with IDs 1 to 13 and 28 stand out in
all the networks. These features are average shortest path,
source to sink edge percentage, abundance of indirect FFL
paths, percentage of direct FFL edges, percentage of indirect
FFL edges, abundance of direct FFL edge occurrences, and
abundance of indirect FFL path occurrences respectively ©.
RH-7 (from Table 2) ranks as a significant feature in all net-
work sizes and other connected motifs such as BW-4, RH-2
and BT-2 only stand out once.

6These features are described in our earlier work [11]
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Extending the hypothesis test described in Section 3.4
to models with only vertex-shared motifs (23 features), we
found no correlation between feature value and its impor-
tance. Here, BW-1, BW-2, BW-4 and RH-7 (Refer to Table
1 and Table 2) are the strongly expressed features with ro-
bustness in all network sizes at different loss models. The
results indicate that controlling the presence of these fea-
tures can significantly impact biological network robustness.
These features can also assist in creating superior bio-inspired
networks where signal transduction is influenced by selective
features such as the ones derived from FFL motif and the
network itself can be adaptive by activating different regions
at different periods of time to conserve energy.

Figure 5(b) represents heat map of model created with
twenty three features of feed-foreard loop connected motifs
at loss 60%. This heatmap shows that Feature IDs BW-1,
BW-2, BW-4, BW-6 (in two instances), RH-13 and BT-2
mark their presence in all the networks, but RH-7 ranks out
as very important feature in all networks.

5. DISCUSSION

There is no one model that fits all data. We will extend
the experiments to larger sized networks for E. coli tran-
scriptional networks until maximum possible size is reached
(i.e. number of nodes in E. coli) to explore if the trends in
feature significance holds true. Further, we intend to extend
the experiments to Saccharomyces cerevisiae. Our earlier ex-
periments [11] revealed that feature significance varies from
one model organism to the other and across network size
and perturbation conditions. The higher ranking of FFL-
derived features (IDs 7, 11, 12 in Figure 5) reveals the sig-
nificance of motif derived features across different network
sizes. Topological features such as network density, average
shortest path remain important across all network sizes and
under different loss conditions. The significance of vertex-
shared motifs is relevant at high loss making them useful
for constructing robust smart networks capable of surviving
lossy conditions. New research has indicated the evolution
of bow-tie motif under distinct conditions such as a limita-
tion on number of edges in a network [5] and its potential

mmm before feature reduction
= after feture reduction



o w S
B
® o= o
o N £

Network size (nodes)

Loss % 0

(a)

T
[$] (o2} ~ ©

Network size (nodes)
N w
o o
o o

100

10 20 35 50 60 75 90
Loss % 0

(b)

Figure 4: (a) Selected features (out of total 38) for
every model at a given network size and loss model
as described in Section 3.2. (b) Selected features
(out of 23) feed-forward loop connected motifs. Cri-
teria: select features that have higher than average
feature importance using random forest regression.

500

I
o
S

0.12

Network size (nodes)
w
8

200 0.09

0.06

100 0.03

0.00
T OOUN~NOOT ®OOUNO T OWLN~NOD S M0 N
TT T - AN ANNN® 000

Feature ID

(a)

sainjes) Jo JaquinN

sainjesy Jo JaquinN

souepodw| ainjea

0.45

500

0.40

0.35

0.30

0.25

0.20

0.15

Network size (nodes)
w N
o o
o o
~ T O

souepodw)| ainjeaq

0.10
0.05

0.00

- o

&8
Feature ID

(b)

Figure 5: (a) Feature significance in all the networks
at 60% loss for model with all 38 features. (b) Fea-
ture significance of connected feed-forward loop mo-
tifs in all the networks at loss 60%. The darker the
color the higher the feature significance. Addition-
ally, numbers are included to indicate feature rank.
Higher the feature importance, better is the feature.

role in maintaining biological network robustness [17].

This is an interesting proposition for designing engineered
systems that exploit the principles seemingly intrinsic to the
design of biological network topologies. The implications
of specialized engineered systems cannot be ignored in the
areas of disaster relief coordination.

6. ADDITIONAL MATERIAL

Entire dataset is made accessible for research purposes at
http://bnet.egr.vcu.edu/data/bict2015. Results for all the
loss models not presented in this paper due to space con-
siderations are also made available at the same URL. Sen-
sitivity analysis for variation in mean square error is also
detailed.
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