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ABSTRACT
A key challenge in robot swarm engineering is the design of
individual robot controllers such that the robots as a group
can perform a specified task. In this paper, we explore al-
gorithmic options for designing and reconfiguring swarms of
synchronous reactive robots to perform a joint navigation
/ morphogenesis task in a known world. Our results show
that neither of these problems can be solved both efficiently
and correctly either in general or relative to a surprisingly
large number of restrictions on robot and swarm architec-
ture. We also give restrictions under which these problems
can be solved both efficiently and correctly.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent systems; I.2.9 [Artificial Intelligence]:
Robotics; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical algorithms and problems—
computations on discrete structures

General Terms
Algorithms, Design, Measurement, Performance, Theory

Keywords
swarm robotics, subsumption architecture, parameterized
computational complexity

1. INTRODUCTION
A robot swarm is a group of autonomous robots that can
collaborate without a centralized controller to perform tasks
that no individual robot in the swarm can accomplish. These
tasks range from specific ongoing behaviours such as the sys-
tematic exploration and exploitation of the resources in an
unknown environment to the formation of particular struc-
tures, either by manipulation of the environment or assem-
bling the robots in the swarm into particular configurations

(morphogenesis). Swarm and morphogenetic engineering
[4, 9] are emerging disciplines whose respective goals are the
efficient and correct creation of swarms with specific collec-
tive behaviours and structure-formation capabilities.

A key problem in both swarm and morphogenetic engineer-
ing is the design of controllers for the individual robots that
will allow these robots as a group to perform their assigned
task. Two main types of swarm design methodologies have
been proposed [4, 9]: behaviour-based design (in which in-
dividual robot controllers are incrementally modified (often
by hand) such that the robots as a group converge on per-
forming the desired task) and automatic design (in which
various search-based methods like evolutionary algorithms
or reinforcement learning create the individual robot con-
trollers). To date, there is no generally-applicable method
that is guaranteed to design swarms efficiently and reliably
for all inputs. Recent work [14] suggests that such methods
may be possible under restrictions, but proposes no tech-
nique except intuition-guided experiments for finding out
what these restrictions are. Given the above, it would be
most useful to know if efficient and correct swarm design
methods are possible and, if so, under what circumstances.

In this paper, we present initial results addressing both of
these questions. First, using computational complexity anal-
ysis [15], we show that both designing and reconfiguring
swarms of synchronous reactive robots (either by changes
to their controllers or initial positions in the environment)
to perform a joint navigation / morphogenesis task in a
known world is NP -hard and thus intractable in general.
Second, using parameterized complexity analysis [10], we
establish restrictions on individual robot and swarm archi-
tectures that make these problems tractable and prove that
tractability holds relative to surprisingly few such restric-
tions. Though the results above are derived for a particular
robot and swarm architecture, we show that they apply to
a much broader class of architectures.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present our robot and swarm architecture and
formalize basic swarm design and reconfiguration problems.
Section 3 demonstrates the intractability of these problems.
Section 4 describes a methodology for identifying conditions
for tractability, which is then applied in Section 5 to identify
such conditions for our problems. In order to accommodate
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conference page limits and focus in the main text on the im-
plications of our results for swarm engineering, result proof
sketches are given in Appendix A. Finally, our conclusions
and directions for future work are given in Section 6.

1.1 Related Work
Various work has been done on the computational complex-
ity of verifying if a given swarm-like system can perform a
task and designing such systems for tasks. The systems so
treated include groups of agents [11, 20, 24], robots [8, 16],
game-pieces [12], and tiles [1]. Much of this work, e.g., [1, 8,
12, 16] assumes that the entities being moved cannot sense,
plan, or move autonomously. In the work where entities
do have these abilities, e.g., [11, 20, 24], the formalizations
of control mechanisms and environments are very general
and powerful (e.g., arbitrary Turing machines or Boolean
propositional formulae), rendering both the intractability of
these problems unsurprising and the derived results unen-
lightening with respect to possible restrictions that could
yield tractability. Only one complexity-theoretic work to
date incorporates both autonomous robots and a suitably
simple and explicit model of robot architecture and environ-
ment [22]. Though this work deals only with single robots,
it is the basis for the research presented in this paper.

2. BACKGROUND

2.1 Formalizing Reactive Robots
Our robots will exist within a a finite square-based mapW in
which basic compass movement is possible between adjacent
squares, i.e., north, south, east, and west, and each square
is either a freespace (which a robot can occupy or travel
through) or an obstacle. Each square has an associated type;
let this set of types be denoted by E. Note that these worlds
are static, in that the map cannot be changed by the robots.

Our reactive robot will be a simplified Brooks-style architec-
ture [5] consisting of sensors, a set of layers, a total ordering
on these layers, and a set of subsumption connections be-
tween layers. These components are specified as follows:

• The sensors can see outwards in a radius r around the
robot in every direction up to the closest obstacle in
that direction, and can verify, for each square-type e ∈
E, the presence of e at any specified position pos within
that perceptual radius, i.e., exists(pos, e). Each robot
also has a compass that allows it to orient itself relative
to the north-south and east-west axes.

• Each layer has a trigger-condition that is a Boolean for-
mula over the available sensory exists-predicates and
a movement-action a. If a layer’s formula evaluates to
True, the layer produces output a; otherwise, it pro-
duces the special output null. Given a set of layers
L, we will assume that the formula in each layer has
length at most f and no two layers compute the same
Boolean function and produce the same output.

• Relative to the total order on the layers, a layer i can
have subsumption links to any layer j that is lower
than i in the ordering; between any two layers, there
can exist an output-inhibition or output-override link
(but not both). An output-inhibition link from a layer

L to a layer L′ makes the output of L′ null if the output
of L is non-null. The set of output-override links to a
layer L′ are assumed to be in a total order, and the
output of L′ is either the value of the highest non-
null layer-override link in the total order, if there is an
output override link whose value is non-null, and the
output specified by L′ otherwise. The output of any
layer that subsumes at least one lower-level layer is not
available directly for output; otherwise, that layer’s
output is available.

The output of a set of ordered layers with subsumption links
will be that of the highest layer relative to the order that is
both available and non-null.

Relative to such an architecture, we will consider the follow-
ing types of architecture modifications for reconfiguration:

1. Adding or deleting at most cs subsumption links; and

2. Moving, deleting, or adding at most cl layers, where
added layers come from a layer-library M .

These modifications correspond to those considered in [2, 6,
17]. Note that any layer-move deletes all subsumption links
between the moved layer and layers that are now above it
in the layer-ordering and that any layer deletion removes all
links to and from that layer.

2.2 Formalizing Reactive Swarms
A reactive swarm S is a group of reactive robots as specified
in Section 2.1. Given a world W and a reactive swarm S,
each freespace in W can hold at most one member of S

and individual robots can only occupy freespace squares. A
particular controller can be associated with more than one
robot in S. This will be useful in assessing the computational
burden (if any) of allowing robots with different control-
behaviours in swarms.

To fully describe how a reactive swarm acts in a world, three
policies must be specified:

1. When can individual robots move, e.g., do all robots
move relative to a shared clock (synchronized move-
ment) or can individual robots move at arbitrary times
relative to each other (asynchronous movement)?;

2. In what manner do robots in the swarm recognize and
communicate with each other?; and

3. If two robots attempt to occupy the same square, how
is this resolved?

For simplicity, we assume synchronous movement, no indi-
vidual robot recognition (i.e., all robots look alike regardless
of the direction in which they are viewed) and no inter-
robot communication of any type (outside of viewed robot
positions and actions), and no movement conflict resolution
(i.e., if at any point during a task two robots in a swarm
attempt to occupy the same space, that task terminates in
failure). Though these choices (especially the first and third)
are not realistic, they do constitute a special case that un-
derlies more realistic cases (see Section 5.2), and hence are
a good starting point for analysis.



2.3 Formalizing Reactive Swarm

Morphogenesis
Our goal is to determine the computational complexity of
robot swarm design and reconfiguration relative to a joint
navigation / morphogenesis task. To allow investigation of
different types of tasks, we will consider a basic type of mor-
phogenesis in which one positioning of robots is transformed
into another positioning, possibly in different parts of the
world (which requires navigation). Let an area be any re-
gion of W and a position be an area a and an assignment
of the members of S to specific freespace squares within a.
For simplicity, we shall assume that areas are defined as
four-sided polygons and the size of an area is the number of
map-squares enclosed by that polygon.

The above yields the following four problems:

Given Reactive Swarm Morphogenesis (GRSM)
Input: A world W , a reactive swarm S, and initial and po-
sitions pI and pF for S in W .
Question: Can S move from pI to pF ?

Selected Reactive Swarm Morphogenesis (SRSM)
Input: A world W , a library A of reactive robots, a swarm-
size |S|, and initial area aI and final position pF in W .
Output: A reactive swarm S of size |S| selected from A and a
positioning pI of S in aI such that S can move from pI to pF ,
if such an S and pI exist, and special symbol ⊥ otherwise.

Given Reactive Swarm Morphogenesis

with Reconfiguration (GRSM-REC)
Input: A world W , a reactive swarm S, initial and final
positions pI and pF for S in W , a library M of layers, and
positive integers cl and cs.
Output: A reactive swarm S′ derived from S by at most cl
movements, deletions, and/or additions of layers relative to
M and cs additions and/or deletions of subsumption links
that is able to move from pI to pF in W , if such an S′ exists,
and special symbol ⊥ otherwise.

Selected Reactive Swarm Morphogenesis

with Reconfiguration (SRSM-REC)
Input: A world W , a swarm-size |S|, initial are aI and final
position pF in W , a library M of layers, a library A of reac-
tive robots, and positive integers cl and cs.
Output: A reactive swarm S of size |S| selected from A with
at most cl subsequent movements, deletions, and/or addi-
tions of layers relative to M and cs subsequent additions
and/or deletions of subsumption links and a positioning pI
of S in aI such that S is able to move from pI to pF in W ,
if such an S and pI exists, and special symbol ⊥ otherwise.

Note there are no optimality restrictions in any of these
problems, e.g., the paths travelled by the swarm need not
be the shortest possible.

The most basic problem above, GRSM, nicely illustrates
how computationally different reactive swarms are from in-
dividual reactive robots. When a swarm consists of a single
robot, GRSM is solvable in polynomial time by simulating
the action of the robot for at most a polynomial number of
timesteps [22, Lemma 1, Supplementary Materials]. How-
ever, this straightforward approach cannot work in general.

Result GRSM.A: There are instances of GRSM that require
an exponential number of timesteps to proceed from the
specified pI to pF .

This is perhaps not surprising given known difficulties in pre-
dicting the long-term behavior of dynamical systems [3]. A
detailed analysis of the computational complexity of GRSM
will be given elsewhere. For now, let us focus on those in-
stances of our remaining three problems for which the basic
swarm movement problem modeled by GRSM can be solved
in polynomial time. This property is encapsulated in the
following definition.

Definition 1. Given world W , a reactive swarm S, and
initial position pI and final area pF in W , S is polynomial-
time verifiable if S either does or does not proceed from pI
to pF within a number of time steps that is polynomial in
the size of W and S.

In the remainder of this paper, we will restrict SRSM, GRSM-
REC, and SRSM-REC such that the reactive swarms created
by these problems are polynomial-time verifiable.

3. REACTIVE SWARM MORPHOGENESIS

IS INTRACTABLE
Following general practice in Computer Science [15], we de-
fine tractability as being solvable in the worst case in time
polynomially bounded in the input size. We show that a
problem is not polynomial-time solvable, i.e., not in the class
P of polynomial-time solvable problems, by proving it to be
at least as difficult as the hardest problems in problem-class
NP (see [15] for details).

Result SRSM.A: SRSM is NP -hard.

Result GRSM-REC.A: GRSM-REC is NP -hard.

Result SRSM-REC.A: SRSM-REC is NP -hard.

Modulo the conjecture P 6= NP which is widely believed to
be true [13], the above shows that the simplest versions of re-
active swarm morphogenesis considered here are not solvable
in polynomial time for all inputs. Note that this intractabil-
ity holds for GRSM-REC and SRSM-REC even when the
swarm consists of a single robot. This is perhaps unsurpris-
ing given the results in [22]. However, it does set the stage
for our subsequent investigation into what restrictions can
and cannot render these three problems tractable.

4. A METHOD FOR IDENTIFYING

TRACTABILITY CONDITIONS
A computational problem that is intractable in general may
yet be tractable relative to restrictions on the input. This
insight is based on the observation that someNP -hard prob-
lems can be solved by algorithms whose running time is poly-
nomial in the overall input size and non-polynomial only in
some aspects of the input called parameters. The following
definition states this idea more formally.

Definition 2. Let Π be a problem with parameters k1, k2,
. . .. Then Π is said to be fixed-parameter (fp-) tractable



Table 1: Parameters for Reactive Swarm Morpho-
genesis Problems

Parameter Description
|L| Max # layers in robot
E # square-types in environment
f Max length of layer-activation formula
r Perceptual radius of robot

|S| # robots in swarm
h Max # controller-types in swarm

|A| # robots in library A

|M | # layers in library M

cl Max # layer-changes in robot
cs Max # sub-link-changes in robot

|aI | Size of initial area
|aF | Size of final area

for parameter-set K = {k1, k2, . . .} if there exists at least
one algorithm that solves Π for any input of size n in time
f(k1, k2, . . .)n

c, where f(·) is an arbitrary function and c is
a constant. If no such algorithm exists then Π is said to be
fixed-parameter (fp-) intractable for parameter-set K.

In other words, a problem Π is fp-tractable for a parameter-
set K if all superpolynomial-time complexity inherent in
solving Π can be confined to the parameters in K.

There are many techniques for designing fp-tractable algo-
rithms [7, 10], and fp-intractability is established in a man-
ner analogous to classical polynomial-time intractability by
proving a parameterized problem is at least as difficult as
the hardest problems in one of the problem-classes in the W -
hierarchy {W [1],W [2], . . .} (see [10] for details). Additional
results are typically implied by any given result courtesy of
the following lemmas:

Lemma 1. [21, Lemma 2.1.30] If problem Π is fp-tractable
relative to parameter-set K then Π is fp-tractable for any
parameter-set K′ such that K ⊂ K′.

Lemma 2. [21, Lemma 2.1.31] If problem Π is fp-intractable
relative to parameter-set K then Π is fp-intractable for any
parameter-set K′ such that K′ ⊂ K.

Observe that it follows from the definition of fp-tractability
that if an intractable problem Π is fp-tractable for parameter-
set K, then Π can be efficiently solved even for large inputs,
provided only that the values of all parameters in K are rel-
atively small. This strategy has been successfully applied
to a wide variety of intractable problems (see [10, 19] and
references). In the next section we investigate how the same
strategy may be used to render our various versions of reac-
tive swarm morphogenesis tractable.

5. WHAT MAKES REACTIVE SWARM

MORPHOGENESIS TRACTABLE?
Our reactive swarm morphogenesis problems have a number
of parameters whose restriction could render these problems

tractable in the sense defined in Section 4. An overview
of the parameters that we considered in our fp-tractability
analysis is given in Table 1. These parameters can be divided
into four groups:

1. Restrictions on robot structure (|L|, |E|, f , r);

2. Restrictions on swarm structure (|S|, h);

3. Restrictions on robot / swarm reconfigurability (|A|,
|M |, cl, cs); and

4. Restrictions on initial and final morphogenetic states
(|aI |, |aF |).

We will assess the fixed- parameter tractability of reactive
swarm morphogenesis relative to all parameters in Table 2
(Section 5.1), show how these results apply in more general
settings (Section 5.2), and discuss the implications of these
results for swarm engineering (Section 5.3).

5.1 Results
Our parameterized intractability results are summarized in
Table 2. Each row describes an fp-intractability result that
holds relative to the set of all parameters whose entries in
that row are not dashes (“–”) or X’s (which mean that the
parameters in those entries are of unbounded value or not
applicable, respectively); if the result holds when a non-
dashed parameter has constant value c, this indicated by
an entry for that parameter with the value c. Observe that
for each problem, fp-intractability holds not only relative to
each of the parameters but to many combinations of these
parameters, even when many of them are restricted to con-
stant values.

At present, we have the following tractability results:

Result SRSM.E: SRSM is fp-tractable for {|A|, |aI |},
{|A|, |aF |}, {|E|, f, |aI |}, {|E|, f, |aF |}, {|E|, r, |aI |},
and {|E|, r, |aF |}.

Result GRSM-REC.I: GRSM-REC is fp-tractable
for {|L|, |S|, |M |}, {|E|, f, |S|}, and {|E|, r, |S|}.

Result SRSM-REC.I: SRSM-REC is fp-tractable
for {|L|, |A|, |M |, |aI |}, {|L|, |A|, |M |, |aF |}, {|E|, f,
|aI |}, {|E|, f, |aF |}. {|E|, r, |aI |}, and {|E|, r, |aF |},

Note that the parameter-sets in all of these results are mini-
mal in the sense that no parameter in any set can be deleted
to yield fp-tractability.

5.2 Generality of Results
Our intractability results, though defined relative to sim-
ple robot and swarm architectures and tasks, have a much
broader applicability. Observe that the architectures and
tasks for which these results hold are in fact restricted ver-
sions of more realistic alternatives, e.g.,



Table 2: Fixed-parameter Intractability Results for Reactive Swarm Morphogenesis Problems
Parameter

Result |L| |E| f r |S| h |A| |M | cl cs |aI | |aF |

SRSM B 4 5 – – p 1 1 X X X – p

C 3 – 13 2 p p – X X X p p

D 3 5 – – p p – X X X p p

GRSM-REC B 3 3 – – – 2 X 1 p 0 – –
C 4 – 13 2 p p X – p 0 p p

D 4 5 – – p p X – p 0 p p

E p – 1 0 1 1 X – p 0 1 1
F p 5 – – 1 1 X – p 0 1 1
G – – 3 1 1 1 X 0 p 0 1 1
H – 5 – – 1 1 X 0 p 0 1 1

SRSM-REC B 4 5 – – p 1 1 0 0 0 – p

C 3 – 13 2 p p – 0 0 0 p p

D 3 5 – – p p – 0 0 0 p p

E p – 1 0 1 1 1 – p 0 1 1
F p 5 – – 1 1 1 – p 0 1 1
G – – 3 1 1 1 1 0 p 0 1 1
H – 5 – – 1 1 1 0 p 0 1 1

• the deterministic reactive robot architecture is a spe-
cial case of more complex architectures that have mem-
ory, probabilistic operation, and/or the ability to ma-
nipulate the environment, e.g., move objects;

• the swarm architecture in which operation is synchron-
ous, robots cannot communicate with or identify each
other, and robot collisions are not handled is a special
case of more complex architectures which are asyn-
chronous, have identifiable and/or communicating
robots, and/or handle robot collisions; and

• the joint navigation / morphogenesis task is a special
case of more complex tasks involving swarm navigation
and/or structure formation.

Intractability results for these alternatives then follow from
the observation that intractability results for a problem Π
also hold for any problem Π′ that has Π as a special case
(suppose Π is intractable; if Π′ is tractable by algorithm A,
then A can be used to solve Π efficiently, which contradicts
the intractability of Π — hence, Π′ must also be intractable).

Our fp-tractability results are more fragile, as innocuous
changes to worlds, tasks, or architectures may in fact vi-
olate assumptions critical to the operation of the algorithms
underlying these results. Hence, they may only apply to cer-
tain more complex cases, and this needs to be assessed on a
case-by-case basis.

5.3 Discussion
We have found that designing and reconfiguring reactive
swarms to perform a joint navigation / morphogenesis task
in a known world is NP -hard (Results SRSM.A, GRSM-
REC.A, and SRSM-REC.A). Our results immediately imply
that it is unlikely that deterministic polynomial-time meth-
ods exist for any of these problems. There are also other

useful implications. It is widely believed that P = BPP

[23, Section 5.2] where BPP is considered the most inclu-
sive class of problems that can be efficiently solved using
probabilistic methods (in particular, methods whose proba-
bility of correctness can be efficiently boosted to be arbitrar-
ily close to probability one). Hence, our results also imply
that unless P = NP , there are no probabilistic polynomial-
time methods which correctly design or reconfigure robot
swarms with high probability for all inputs. Together with
the above, this suggests that no currently-used method (in-
cluding the probabilistic methods employed in evolutionary
robotics [18]) can guarantee both efficient and correct oper-
ation for all inputs for these problems.

As described in Section 4, efficient correctness-guaranteed
methods may yet exist relative to plausible restrictions on
the input and output. This is the strategy advocated by
Francesca et al [14]. It seems reasonable to conjecture that
some restrictions relative to the parameters listed in Table
2 should render our problems tractable. However, no single
one or indeed many possible combinations of these restric-
tions can yield tractability, even when many of the parame-
ters involved are restricted to very small constants (Results
SRSM.B–D, GRSM-REC.B-H, SRSM-REC.B-H). Of partic-
ular interest here are the intractability of all of our prob-
lems when individual robot controllers are very simple (Re-
sults SRSM.C, GRSM-REC.C, and SRSM-REC.C), identi-
cal (Results SRSM.B, GRSM-REC.E, and SRSM-REC.B),
or both (Results SRSM.B and SRSM-REC.B) and of our
reconfiguration problems when there is only a single robot
in the swarm (Results GRSM-REC.E–H and SRSM-REC.E-
H). The latter highlights the computational power (and at-
tendant design difficulty) of allowing robot controller modi-
fication. However, as shown by Results SRSM.B and SRSM-
REC.B, there a comparable power and difficulty associated
with the initial positioning of the robots in a swarm. As both
of these sets of results depend on a suitably structured (and
arguably complex) world, it would be interesting to know



to what extent intractability can be preserved by trading a
simpler world against a more complex swarm architecture
incorporating robot identifiability and/or communication.

To date, though none of the restrictions considered here by
itself yields tractability for any or all of our three problems,
we have found a number of restriction-combinations that do
(Results SRSM.E, GRSM-REC.I, and SRSM-REC.I). This
is not indicative of a corresponding number of fundamen-
tally different approaches to tractability – rather, each such
combination effectively limits the number of possible swarm
compositions and placements in the world that need to be
considered, either explicitly (|A| for composition, |S|, |aI |,
and |aF | for placement) or implicitly (|L|, |M |, |E|, f , and
r for composition). The latter are of particular interest (es-
pecially |E|, f , and r), in that they suggest that one can get
tractability in design by limiting the complexity of either the
actual world (by restricting the structure in the world that
is available to be perceived and exploited by the swarm) or
the perceived world (by “dumbing down” the sensors (|E|,
r) or the combinations of sensed information that can be
acted on (f)). As such, these results are a first step towards
investigating the computational tradeoff between world and
swarm complexity mentioned above.

Three valid objections to our tractability results are that
(1) the algorithms underlying these results are crude and
rely on brute-force search, (2) the running times of these
underlying algorithms are (to be blunt, ludicrously) imprac-
tical, and (3) the parameters involved may not be of small
value in inputs encountered in practice. Objections (1) and
(2) are often true of the initial fp-algorithms derived rel-
ative to a parameter-set. However, once fp-tractability is
established, surprisingly effective parameterized algorithms
are often subsequently developed with both greatly dimin-
ished non-polynomial terms and polynomial terms that are
quadratic and even linear in the input size (see [7, 10] and
references). Though Objection (3) initially appears to be
more problematic, it is an artifact of our analysis process.
We focused on minimal fp-tractable parameter-sets so that
they would imply the maximum possible number of other
fp-tractability results by Lemma 1. This minimization was
accomplished by (1) replacing parameters in the running
time with loose upper bounds stated in terms of other pa-
rameters, e.g., x → f(y) where x << f(y), and (2) re-
placing polynomial-terms formed of two parameters with
an exponential term in a third parameter, e.g., xy → 2z.
This obscures parameters whose values are small (partic-
ular if the parameters are the polynomial powers in (2)).
Hence, the impractical algorithms currently underlying our
fp-tractability results should be seen as promissory notes on
practical algorithms involving larger sets of parameters that
will be developed in future.

A final very important proviso is in order – namely, as il-
luminating as the results given here are in demonstrating
basic forms of (in)tractability for swarm design and recon-
figuration problems, these results do not necessarily imply
that methods currently being applied to design swarms are
impractical. Differing robot and swarm architectures, the
particular situations in which these methods are being ap-
plied, and accepted standards by which method practicality
is assessed may render the results given here irrelevant. For

example, current methods may already be implicitly exploit-
ing problem restrictions such that both efficient and correct
operation (or operation that is correct with probability very
close to one) are guaranteed. That being said, not knowing
the precise conditions under which such practicality holds
could have damaging consequences, e.g., drastically slowed
swarm creation time and/or unreliable swarm operation, if
these conditions are violated. Given that reliable swarm
operation is very important and efficient swarm design and
reconfiguration is at the very least desirable, the acquisition
of such knowledge via a combination of rigorous empirical
and theoretical analyses should be a priority. With respect
to theoretical analyses, it is our hope that the techniques
and results in this paper comprise a useful first step.

6. CONCLUSIONS
In this paper, we have presented a formal characterization
of reactive swarm design and configuration for a basic nav-
igation / morphogenesis task in a known world. Our com-
plexity results reveal that while these problems are compu-
tationally intractable in general, there are restrictions that
render them tractable. Knowledge of these and other such
restrictions should be useful in creating swarm design and
reconfiguration methods that are efficient and correct.

There are several promising directions for future research.
The first of these will be to continue our analysis relative to
the currently examined robot and swarm architecture, as it
provides a simple setting in which to address questions such
as the computational tradeoff between world- and swarm-
structure raised in Section 5.3 and the computational ef-
fects of allowing random initial robot positions (a first step
in looking at more desirable forms of morphogenesis). The
second will be to extend our analysis to incorporate more re-
alistic robot and swarm models. Of particular interest here
are robots using the probabilistic finite-state automaton for-
malism popular in the literature; at the very least, analysis
of such a formalism would allow us to address the general-
ity of the restrictions proposed in [14]. Last but certainly
not least, derived fp-algorithms should be implemented and
tested using actual robot swarms. Though difficult, such
testing will be invaluable in providing guidance for structur-
ing future theoretical analyses along the lines sketched here
as well as future research in swarm engineering in general.
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APPENDIX

A. SKETCHES OF RESULT PROOFS
The proof of Result GRSM.A uses the simulation of the
numerical and carry bits of an n-bit binary counter by a
(2n + 1)-member robot swarm appropriately placed in an
(n + 4) × 5 world. Positions pI and pF correspond to the
encodings of the numbers 0 and 2n−1 in the counter, and it
takes the robot swarm more than 2n−1 timesteps to proceed
from pI to pF .

All of our intractability results are derived using reductions.
A reduction from a problem X to a problem Y is essentially
a pair of polynomial-time algorithms A1 and A2 such that
A1 transforms an instance I of X into an instance I ′ of Y
and A2 transforms any answer to I ′ into an answer for I.
Given a reduction from X to Y , if Y is solvable in polyno-
mial time by an algorithm A′, then A1, A

′ and A2 can be
chained together to give a polynomial time algorithm for X.
Conversely, if X reduces to Y and X is not solvable in poly-
nomial time then neither is Y (otherwise, a polynomial-time
algorithm for Y could be used with the algorithms A1 and
A2 in the reduction to solve X in polynomial time, which
would contradict the intractability of X). Fixed-parameter
intractability can be proved by an analogous reduction be-
tween parameterized problems {K}-X and {K′}-Y that in
addition requiresA1 to create I

′ such that for each k′ ∈ K′ in
I ′, k′ = f(K) for some function f . By reducing from anNP -
hard (W [x]-hard) problem, we can show (fp-) intractability
provided that P 6= NP (FPT 6= W [x]). Though neither of
these class-inequality hypotheses has been formally proved,
they are commonly accepted as true within the Computer
Science community (see [10, 13, 15] for details).

All of our intractability results are proved by reductions from
the following NP -hard problem:

Dominating set [15, Problem GT2]
Input: An undirected graph G = (V,E) and an integer k.
Question: Does G contain a dominating set of size ≤ k, i.e.,
is there a subset V ′ ⊆ V , |V ′| ≥ k, such that for all v ∈ V ′,
either v ∈ V ′ or there is a v′ ∈ V ′ such that (v, v′) ∈ E?

The parameterized problem {k}-Dominating Set is known
to be W [2]-hard. For each vertex v ∈ V , let the complete
neighbourhood NC(v) of v be the set composed of v and the



set of all vertices in G that are adjacent to v by a single
edge, i.e., v ∪ {u | u ∈ V and (u, v) ∈ E}. We assume
below an arbitrary ordering on the vertices of V such that
V = {v1, v2, . . . , v|V |}.

Though we have a number of intractability results, the re-
ductions underlying these results were created by combining
a small set of techniques. Sketches of these techniques in the
order in which they appear in the result-series is as follows:

• Result SRSM.B: Construct a |V | × (|V | + 2) world
in which column i, 1 ≤ i ≤ |V |, corresponds to vertex
vi in V and row i, 2 ≤ i ≤ |V | encodes the complete
neighbourhood of vi−1 by placing 0’s and 1’s in the
appropriate columns. The first row is all 0’s and the top
row is all G’s. The only controller-type will go up if it
sees a 1-square directly above or any other robot in the
row above and there is no robot in the row immediately
below, and go right if it is on top of a G-square. A
swarm of k of these robots is placed initially in the
first row, and will only progress to the last row (and
then accumulate on the right-hand side of that row) if
columns in which the robots were initially placed in the
first row correspond to a dominating set of size k in the
given instance of Dominating Set.

• Result SRSM.C: Construct a |V | × (|V |2 + |V |(|V | −
1)) world in which each column corresponds to a vertex
in V . In this reduction, the complete neighborhoods
are encoded in the columns in a staggered fashion such
that the first neighbourhood is encoded in rows 1 to
|V | of column 1, the second in rows 2|V |+ 1 to 3|V | of
column 2, the third in rows 4|V |+1 to 5|V | of column 3,
and so forth. This |V |-height column-wise encoding of
a complete neighbourhood has symbol vi in square i if
vi is in the complete neighbourhood being encoded and
symbol 0 otherwise. There are |V | controller-types in
library A, each corresponding to a distinct vertex in V .
The controller associated with vertex v will (1) go up
unless there is an empty square immediately below and
another robot immediately below that, i.e., it is leaving
a robot in its column too far behind, and (2) go right
if it is either on top of a v-square or there is already a
robot in the column immediately to the right. A swarm
of size k is selected from A and placed in the lowest k

squares of column 1. This swarm will only reach the
topmost k squares of column |V | if the set of vertices
associated with the selected robots is a dominating set
of size k in the given instance of Dominating Set.

• Result SRSM.D: Modify the construction in Result
SRSM.C such that each vertex-square in a column-wise
encoding of a complete neighbourhood is now encoded
in binary as a horizontal strip of ⌈log

2
|V |⌉ 0- and 1-

squares to the left of that vertex-square.

• Result GRSM-REC.B: Modify the construction in
Result SRSM.B such that the robot controller omits
the layer l that allows it to go up if there is a 1-square
immediately above as well as the layer that makes it go
right if it is on a G-square, makes l the only layer in
library M , and place |V | robots in the first row of the
world. The swarm will only reach the top row if layer l
can be added to k robots which correspond to a set of

vertices that are a dominating set of size k in the given
instance of Dominating Set.

• Results GRSM-REC.C and GRSM-REC.D: Mod-
ify the constructions in Results SRSM.C and SRSM.D
such that (1) library A contains a single type controller
that can only go up as previously specified and go right
only if there is already a robot in the column immedi-
ately to the right and (2) library M contains all of the
|V | layers that allow a robot to go to the right if it is
on top of a particular v-square (in the case of SRSM.C)
or to the immediate right of the binary encoding of the
v-square (in the case of SRSM.D). The swarm can only
reach pF if k layers from M can are added to the swarm
(not necessarily to k distinct robots) which correspond
to a set of vertices that form a dominating set of size k

in the given instance of Dominating Set.

• Results GRSM-REC.E and GRSM-REC.F: Mod-
ify the constructions in Results GRSM-REC.C and
GRSM-REC.D such that all layers are now added to a
single robot.

• Result GRSM-REC.G: Modify the construction in
Result GRSM-REC.F to have a single controller-type
which has an additional |V | layer-pairs where each pair
consists of a v-right layer from M and a layer inhibiting
that v-right layer. The effect of adding the appropriate
k layers from M to the controller in Result GRSM-
REC.F can now be accomplished by deleting the ap-
propriate k inhibition-layers in the modified controller.

• Result GRSM-REC.H: Modify the construction in
Result GRSM-REC.G using the v-square binary encod-
ing scheme in Result SRSM.D.

Results SRSM-REC-B-H are derived using slight variants of
the constructions sketched above for SRSM.B and GRSM-
REC.C-H, respectively. Note that the NP -hardness in Re-
sults SRSM.A, GRSM-REC.A, and SRSM-REC.A follows
from any of the SRSM, GRSM-REC, and SRSM-REC con-
structions described above.

The fixed-parameter algorithms underlying Results SRSM-
E, GRSM-REC.I, and SRSM-REC.I are relatively simple,
being based on the brute-force combinatorics of generating
all possible swarms and/or positionings. However, the math-
ematical derivations used to phrase runtimes in terms of
minimal parameter-sets are intricate and algorithm-specific,
and thus, unlike the the constructions described above, not
amenable to brief summary. Hence, descriptions of these
algorithms will be deferred to the full paper.


