
Fast Redistribution of a Swarm of Heterogeneous Robots

Amanda Prorok
GRASP Laboratory

University of Pennsylvania
Philadelphia, USA

prorok@seas.upenn.edu

M. Ani Hsieh
SAS Laboratory
Drexel University

Philadelphia, USA
mhsieh1@drexel.edu

Vijay Kumar
GRASP Laboratory

University of Pennsylvania
Philadelphia, USA

kumar@seas.upenn.edu

ABSTRACT
We present a method that distributes a swarm of heteroge-
neous robots among a set of tasks that require specialized
capabilities in order to be completed. We model the system
of heterogeneous robots as a community of species, where
each species (robot type) is defined by the traits (capabili-
ties) that it owns. Our method is based on a continuous ab-
straction of the swarm at a macroscopic level, as we model
robots switching between tasks. We formulate an optimiza-
tion problem that produces an optimal set of transition rates
for each species, so that the desired trait distribution among
the tasks is reached as quickly as possible. Our solution is
based on an analytical gradient, and is computationally effi-
cient, even for large choices of traits and species. Finally, we
show that our method is capable of producing fast conver-
gence times when compared to state-of-the-art methods.

Keywords
swarm robotics, heterogeneous multi-robot systems, stochas-
tic systems, task allocation

1. INTRODUCTION
Technological advances in embedded systems, such as com-
ponent miniaturization and improved efficiency of sensors
and actuators, are enabling the deployment of very large-
scale robot systems, i.e., swarms of robots. However, the
smaller we design our platforms, the more stringent the
tradeoffs we need to make with respect to endowed capa-
bilities. As a consequence, investigators are composing their
robot systems with multiple, heterogeneous types of robots
in order to tackle increasingly challenging tasks [1, 9]. Our
premise is that, in a swarm of robots, one single type of
robot cannot cater to all aspects of the task at hand, be-
cause at the individual level, it is governed by design rules
that limit the scope of its capabilities.

In this work, our objective is to distribute a swarm of hetero-
geneous robots as quickly and efficiently as possible among

a set of tasks that require specialized competences. This
objective is part of a larger vision to develop control and co-
ordination strategies for teams of heterogeneous robots with
specific capabilities. For example, a larger robot may be
able to carry more powerful sensors, but may be less agile
than its smaller counterpart. Or, we could consider the lim-
ited payload of aerial robots: If a given task requires rich
sensory feedback, multiple heterogeneous aerial robots can
complement each other by carrying distinct sensors, alto-
gether more than a single one could carry on its own. Ini-
tially, we will consider tasks that are to be performed in par-
allel, continuously, and independently (without precedence
constraints). Instances of information gathering lend them-
selves naturally to this problem formulation, with applica-
tions to surveillance, environmental monitoring, and situa-
tional awareness [3, 7, 20].

Given a set of tasks, and knowledge about what the task re-
quirements are, our problem considers which robots should
be allocated to which tasks. This problem is an instance
of the MT-MR-TA: Multi-Task Robots, Multi-Robot Tasks
problem [5], and can be reformulated as a set-covering prob-
lem that stems from combinatorial optimization. This con-
cept considers subsets of robots in a multi-robot system, and
pairs them optimally (given a cost function) to tasks. This
problem is strongly NP-hard [11]. A number of heuristic al-
gorithms have been proposed. However, the running times
of these algorithms are functions of the sizes of the feasible
subsets (of robots paired to a task), and hence, become very
expensive for large robot teams and swarms. Furthermore,
the algorithms are penalized when multiple robot-subset-
to-task combinations are feasible (this is the case, for ex-
ample, when robots have overlapping capabilities). These
algorithms are not suitable for large-scale systems, such as
robot swarms. In particular, for systems that are required to
adapt to changing task requirements online, we need to con-
sider algorithms that are efficient and that run on low-cost,
resource-constrained mobile platforms. Hence, we consider
a strategy that is scalable in the number of robots and their
capabilities, and is robust to changes in the robot popula-
tion [2, 6, 8]. An important property of this strategy is its
inherently decentralized architecture, with robots switching
between tasks (behaviors) stochastically. This model is in-
spired by previous work in the swarm-robotic domain that
explores self-organized behavior of natural systems [12, 13].

The present work focuses on the optimization of transition
rates that enables a heterogenous robot swarm to converge

BICT 2015, December 03-05, New York City, United States
Copyright © 2016 ICST
DOI 10.4108/eai.3-12-2015.2262349



quickly to a configuration that satisfies a desired trait dis-
tribution. The key difference between our work and pre-
vious work [2, 8] is that we formulate our desired state as
a distribution of traits among tasks, instead of specifying
the desired state as a direct measure of the robot distribu-
tion. In other words, our framework allows a user to specify
how much of a given capability is needed for a given task,
irrespective of which robot type satisfies that need. As a
consequence, we do not employ optimization methods that
utilize final robot distributions in their formulations (which
is the case in previous works [2, 15]). Instead, we explicitly
optimize the distribution of traits, and implicitly solve the
combinatorial problem of distributing the right number of
robots of a given type to the right tasks.

2. PROBLEM FORMULATION
Heterogeneity and diversity are core concepts of this work.
To develop our formalism, we will borrow terminology from
biodiversity literature [18, 19]. We define our robot system
as a community of robots. Each robot belongs to a species,
defining the unique set of traits that encodes the robots’
capabilities. In this work, we will consider binary instantia-
tions of traits (corresponding to the presence or absence of
a given trait in a species). As an example, one trait might
consider the presence/absence of a particular sensor, such
as a camera or laser range finder. Another trait might con-
sider the capability of fitting through a passageway with a
fixed width. In this work, we assume that the tasks have
been encoded through binary characteristics that represent
the skill sets critical to task completion.

2.1 Notation
We consider a community of S robot species, with a total
number of robots N , and N (s) robots per species such that
∑S

s=1 N
(s) = N . The community is defined by a set of U

traits, and each robot species owns a subset of these traits. A

species is defined by a binary vector q(s) = [q
(s)
1 , q

(s)
2 , ..., q

(s)
U ].

We can then define a S × U matrix Q, with rows q(s):

Qsu =

{

0 , if species s does not have trait u
1 , if species s has trait u

We model the interconnection topology of the M tasks via
a directed graph, G = (E ,V) where the set of vertices, V,
represents tasks {1, . . . ,M} and the set of edges, E , rep-
resents the ordered pairs (i, j), such that (i, j) ∈ V × V,
and i and j are adjacent. Edges denote the possibility to
switch between two adjacent tasks. We assume the graph
G is a strongly connected graph, i.e., a path exists between
any pair of vertices (in contrast to a fully connected graph,
where an edge exists between any pair of vertices), and we
assume that the robots have knowledge of this graph. We

assign every edge in E a transition rate, k
(s)
ij > 0, where

k
(s)
ij defines the transition probability per unit time for one

robot of species s at task i to switch to task j. Here k
(s)
ij

is a stochastic transition rule. We impose a limitation on

the maximum rate of each edge with k
(s)
ij < k

(s)
ij,max. These

values can be determined by applying system identification
methods on the actual setup. For example, in a system
where nodes represent physically distributed sites, the tran-
sition rate represents the rate with which a specific path is
chosen. This value can depend on observed factors, such as
typical road congestion or the condition of the terrain.

The distribution of the robots belonging to a species s at

time t is described by a vector x(s)(t) = [x
(s)
1 (t), ..., x

(s)
M (t)]⊤.

Then, if x(s) are the columns of X(t), and q(s) are the rows
of Q, we have the M × U matrix Y that describes the dis-
tribution of traits among tasks. For time t this relationship
is given by

Y(t) = X(t) ·Q (1)

2.2 Problem Statement
The initial state of the system is described by X(0), and
hence, the initial distribution of traits among the tasks is
described by Y(0). The time evolution of the number of
robots of species s at task i is given by a linear law

dx
(s)
i

dt
=

∑

∀j|(i,j)∈E

kjix
(s)
i (t)−

∑

∀j|(i,j)∈E

kijx
(s)
i (t) (2)

Then, for all species s, our base model is given by

dx(s)

dt
= K(s)x(s) ∀s ∈ 1, . . . , S (3)

where K(s) ∈ R
M×M is a rate matrix with the properties

K(s)⊤1 = 0 (4)

K
(s)
ij ≥ 0 ∀(i, j) ∈ E (5)

These two properties result in the following definition:

K
(s)
ij =











k
(s)
ji , if i 6= j, (i, j) ∈ E

0, if i 6= j, (i, j) /∈ E

−
∑M

i=1,(i,j)∈E k
(s)
ij , if i = j

Since the total number of robots and the number of robots
per species is conserved, the system in Eq. 3 is subject to
the constraints

X⊤ · 1 = [N (1), N (2), . . . , N (S)]⊤ (6)

with X � 0, (7)

where � is an element-wise greater-than-or-equal-to oper-
ator. Given a target distribution Ȳ, the goal is to find an
optimal rate matrix K(s)⋆ for each species s so that we have

Ȳ = X̄ ·Q (8)

In other words, the task is to redeploy the robots of each
species configured according to X(0) initially, so that a de-
sired trait configuration Ȳ is reached. In doing this, we
reach a robot configuration X̄ that satisfies Eq. 1, subject
to Eq. 6. We note that there may be several such X̄.

3. METHODOLOGY
In this section, we describe our methodology for obtaining
an optimal transition matrix K(s)⋆ for each species so that
the desired trait distribution is reached. Berman et al. [2]
present an exposé of optimization methods that can be used
to obtain optimal transition rates for a homogenous robot
swarm that is required to converge to a desired distribution.
Two general approaches are considered: convex optimiza-
tion and stochastic optimization. The convex optimization
approach requires knowledge of the desired final robot distri-
bution. Indeed, our problem formulation specifies a desired
trait distribution Ȳ without explicit definition of the final



robot distribution X̄. Hence, convex optimization strate-
gies as in [2] are not applicable to our problem. Given this
rationale, we choose an optimization approach that is able
to find optimal transition rates with knowledge of Ȳ and
X(0), without knowledge of X̄. Although fully stochastic
schemes such as Metropolis optimization have been shown
to produce similar results [2], they are not computation-
ally efficient, and are ill-suited to real-time applications. In
the following, we present a differentiable objective function
that can be efficiently minimized through gradient descent
techniques. Additionally, our method explicitly minimizes
the convergence time of K(s), unlike the convex optimiza-
tion methods presented in [2] which approximate K(s) with
a symmetric equivalent (forcing bidirectionally equal transi-
tion rates between tasks).

3.1 Design of Optimal Transition Rates
We combine the solution of the linear ordinary differential
equation, Eq. 3, and Eq. 8 to obtain the solution:

Y(t) =
S
∑

s=1

eK
(s)⋆tx

(s)
0 · q

(s) (9)

To find the values of K(s)⋆, we consider the error

E = Ȳ −
S
∑

s=1

eK
(s)⋆τx

(s)
0 · q

(s) (10)

where τ is the time at which the desired distribution is
reached, and formulate our optimization problem as

minimize J (1) = ‖E ‖2
F

(11)

such that k
(s)
ij < k

(s)
ij,max

which formulates that a minimum cost is found when the
final trait distribution corresponds to the desired trait dis-

tribution, subject to maximum transition rates k
(s)
ij,max. The

notation x
(s)
0 is shorthand for x(s)(0). The operator ‖ · ‖F

denotes the Frobenius norm of a matrix. There is no closed-
form solution to the optimization problem in Eq. 11, but we
can use the derivatives of J (1) with respect to the param-
eters to perform gradient descent. So that the implemen-
tation of the optimization function is efficient, it is impor-
tant that the function is differentiable and that an analytical
gradient can be computed. By applying the chain rule, the
derivative of our objective function with respect to the tran-
sition matrix K(s) is

∂J (1)

∂K(s)
=

∂J (1)

∂eK(s)τ
·
∂eK

(s)τ

∂K(s)τ
·
∂K(s)τ

∂K(s)
(12)

We first compute the derivative of the cost with respect to

the expression eK
(s)τ .

∂J (1)

∂eK(s)τ
= −2E ·

[

x
(s)
0 · q

(s)
]⊤

(13)

The derivation of the 2nd element of Eq. 12 requires the
derivative of the matrix exponential. Computing the deriva-
tive of the matrix exponential is not trivial. We adapt the
closed-form solution given in [10] to our problem, and write
the gradient of our cost function as

∂J (1)

∂K(s)
= V−1⊤

[

V⊤ ∂J (1)

∂eK(s)τ
V−1⊤

⊙W(τ )

]

V⊤τ (14)

where ⊙ is the Hadamard product, K(s) = VDV−1 is the
eigendecomposition of K(s). V is the M ×M matrix whose
jth column is a right eigenvector corresponding to eigen-
value di, and D = diag(d1, . . . , dM ). The matrix W(t) is
composed as follows 1

W(t) =

{

(edit − edjt)/(dit− djt) i 6= j
edit i = j

3.2 Optimization of Convergence Time
The cost function in Eq. 11 does not consider convergence
time τ as a variable. By adding a term that penalizes high
convergence time values, we can compute transition rates
that explicitly optimize convergence time. The modified ob-
jective function is

minimize J (2) = J (1) + ατ 2 (15)

such that k
(s)
ij < k

(s)
ij,max and τ > 0,

and α > 0. By increasing α, we increase the importance of
the convergence time (by penalizing high values of τ ). The
derivative with respect to the transition rates is

∂J (2)

∂K(s)
=

∂J (1)

∂K(s)
(16)

In order to optimize the convergence time, we need the
derivative with respect to τ . This derivative is computed
analogously to the derivative with respect to K(s) (confer
Eq. 14). We have

∂J (2)

∂τ
=

∂J (1)

∂τ
+ 2ατ (17)

with

∂J (1)

∂τ
=

S
∑

s=1

1⊤V−1⊤
A1V

⊤K(s)1 (18)

and

A1 = V⊤ ∂J (1)

∂eK
(s)τ

V−1⊤
⊙W(τ ) (19)

The optimization of Eq. 15 will lead to transition rates that
may lead to the desired trait distribution quickly, but there
is no guarantee that this is the steady state of K(s). If we
compute the transition rates at the outset of the experi-
ment (without refining them online), we may wish to ensure
that the state reached at the optimal time t⋆ remains near-
constant. Hence, we modify our cost function in Eq. 15 as
follows.

min J (3) = J (2) (20)

+ β
S
∑

s=1

∥

∥

∥
eK

(s)τx
(s)
0 − eK

(s)(τ+ν)x
(s)
0

∥

∥

∥

2

2

such that k
(s)
ij < k

(s)
ij,max and τ > 0,

and β > 0. The additional term in our cost function allows
us to ensure that the state reached by employing K(s)⋆ re-
mains near-constant for arbitrarily long time intervals ν. By

1Here, we assume that that K(s) has M distinct eigen-
values. If this is not the case, an analogous decomposition
of K(s) to Jordan canonical form is possible, as elaborated
in [10]. We note that for most models of interest, however,
this is rarely the case.



increasing the value of β, the difference of the robot distri-
butions at times τ and τ + ν is decreased. In other words,
as we will see in Section 4, the trait distribution correspond-
ing to the steady state of K(s) gets arbitrarily close to the
desired trait distribution Ȳ as β increases (the same is true
when we increase ν). Note that when α = 0, β should not

be infinitely large, as in this case, K(s)⋆ = 0. However, for
all practical purposes β is bounded and α > 0.

Let us refer to this additional third term of J (3) (and second

term of Eq. 20) as J (3,3). Then, the derivative of the new
objective function with respect to the transition rates can
be expressed as

∂J (3)

∂K(s)
=

∂J (2)

∂K(s)
+

∂J (3,3)

∂K(s)
(21)

Again, we apply the chain rule to obtain

∂J (3,3)

∂K(s)
=

∂J (3,3)

∂eK
(s)τ

∂eK
(s)τ

∂K(s)τ

∂K(s)τ

∂K(s)
(22)

−
∂J (3,3)

∂eK
(s)(τ+ν)

∂eK
(s)(τ+ν)

∂K(s)(τ + ν)

∂K(s)(τ + ν)

∂K(s)

The outer derivative is

∂J (3,3)

∂eK
(s)τ

=
∂J (3,3)

∂eK
(s)(τ+ν)

(23)

= 2β
[

eK
(s)τ

x
(s)
0 − eK

(s)(τ+ν)
x
(s)
0

]

· x
(s)
0

⊤

We apply the same development as in Eq. 14 to obtain the
equation

∂J (3,3)

∂K(s)
= V−1⊤

[A2τ −A3(τ + ν)]V⊤ (24)

with

A2 = V⊤ ·
∂J (3,3)

∂eK(s)τ
·V−1⊤

⊙W(τ ) (25)

and

A3 = V⊤ ·
∂J (3,3)

∂eK(s)(τ+ν)
·V−1⊤

⊙W(τ + ν) (26)

The derivative with respect to time τ is analogous:

∂J (3)

∂τ
=

∂J (2)

∂τ
+

S
∑

s=1

1⊤V−1⊤
[A2 −A3]V

⊤K(s)1 (27)

For all above cost functions, z = 1, 2, 3, the derivative with
respect to the off-diagonal elements ij of the matrix K(s),
with (i, j) ∈ E , is

∂J (z)

∂k
(s)
ij

=

{

∂J (z)

∂K(s)

}

ij

−

{

∂J (z)

∂K(s)

}

jj

(28)

where {·}ij denotes the element on row i and column j.

Finally, we summarize our optimization problem as follows:

K(s)⋆, t⋆ = argmin
K(s),τ

J (3), (29)

under the constraints shown in Eq. 20. To solve the system,
we implement a basin-hopping optimization algorithm [21],
which attempts to find the global minimum of a smooth
scalar function. Locally, our basin-hopping algorithm uses a
quasi-Newton method (namely, the Broyden-Fletcher-Goldfarb-
Shanno algorithm [16] with bound constraints), using the
analytical gradients given by Eq. 27 and Eq. 28.

3.3 Computational Complexity
The computational complexity of computing the gradient
of our objective function is O(S ·M3 + S · M2 · U). The
first part of this complexity is dictated by the eigenvalue
decomposition, which is known to be O(M3) for non-sparse
matrices [4]2. We compute this decomposition only once per

optimization (see Eq. 14, where K(s) = VDV−1), for each

optimization of K(s). The second part is dictated by the
multiplication of the matrices in Eq. 14, for which the cost
is O(M2 · U). Globally speaking, the computation grows
linearly with the number of species and traits, and it grows
slightly slower than the cube of the number of tasks. When
studying heterogenous system, it is indeed a valuable result
that the gradient scales at most linearly with the number
of traits and species in order to allow for the exploration of
a wider range of robot capabilities. Overall, for the results
shown in Section 4, the average time to compute the gradient
for a system with M = 8, U = 4, and S = 4 is around
1.35 ms with ν = 0, and 2.2 ms with ν > 0 (the number
of parameters to optimize can be as large as 225 in this
case, depending on the graph’s adjacency matrix). The code
was implemented in Python using the NumPy and SciPy
libraries, and tested on a 2 GHz Intel Core i7 using a single
CPU.

3.4 Robot Controller
The optimization described above returns optimal transition
rates K(s)⋆. If the robots run the optimization algorithm
on-board, they need knowledge of abstract state information
(i.e, the initial distribution of the robot swarm among tasks,
X(0)). If the optimization is run off-board, the robots need

knowledge of the transition rates of their species, k
(s)
ij . We

note that this information is represented by a small number
of values (at most M2 values per species, or a much smaller
number if the graph is sparse), and needs to be transmitted
to the robots only at the start of each new redistribution.

The agent-level control is based on the transition rates k
(s)
ij

encoded by the transition matrix K(s): A robot of species
s at task i transitions to task j according to probability

p
(s)
ij that is an element of the matrix P(s) = eK

(s)∆T , where
∆T is the duration of one time-step. Hence, in order to
determine which task the robot must transition to next, it
samples a new task with a probability according to P(s).
This is equivalent to sampling from the discrete probability

distribution P(p
(s)
i1 , . . . , p

(s)
iM ), where i represents the current

task. This procedure is shown in Algorithm 1. We note that
as the robot is transitioning to a new task, it continues the
control loop (i.e., sampling new tasks). Although we do not
explicitly model transitioning time, the resulting behavior is
very close to what is predicted by the macroscopic model.

4. RESULTS
Previous work has shown the benefit of validating meth-
ods over multiple, complementary levels of abstraction (sub-
microscopic, microscopic, and macroscopic) [14]. In the
present work, we propose an evaluation of our methods on
two levels: microscopic and macroscopic. Indeed, the most

2In the special case where all eigenvalues are dis-
tinct, the eigenvalue decomposition can be reduced to
O(M2.376 log(M)) [17].



Algorithm 1 Robot Controller(K(s), ∆T )

1: P(s) = eK
(s)∆T

2: while 1 do
3: m ∼ P(p

(s)
i1 , . . . , p

(s)
iM )

4: if m 6= i then
5: Switch to task m
6: i← m
7: end if
8: Wait ∆T
9: end while

efficient way of simulating the swarm of robots is by con-
sidering a continuous macroscopic model, derived directly
from the ordinary differential equation, Eq. 3. In order to
validate the methods at a lower level of abstraction, we also
implement a discrete microscopic model that emulates the
behavior of individual robot controllers. Running multiple
iterations of the microscopic model enables us to capture the
stochasticity resulting from our control system.

Our performance metric considers the degree of convergence
to Ȳ, expressed by the fraction of misplaced traits

µ(Y) =
‖(Y − Ȳ)‖1

2‖Y‖1
(30)

We say that one system converges faster than another if it
takes less time for µ(Y) to decrease to some relative error
µthresh, such as µthresh = 2.5%. Similar performance metrics
have been proposed in [2, 6, 8].

We will consider two optimization methods, one that stems
from this paper, and one that stems from [2]:

Explicit We consider the optimization problem posed in
Eq. 29 that explicitly optimizes convergence time, with
α = 1, β = 5, and ν = 2, producing a fixed K(s)⋆ for
each species.

Implicit We adapt the convex optimization method pre-
sented in [2], denoted in the latter work as [P1]. This
adapted method implicitly optimizes the convergence
time by optimizing the asymptotic convergence rate (of
a system of homogenous robots). In order to do this,
we minimize the second eigenvalue λ2 of a symmet-
ric matrix S(s), such that λ2(S

(s)) ≥ Re(λ2(K
(s))).

Since this method requires the knowledge of the de-
sired species distribution X̄, we artificially bootstrap
the method by computing a random instantiation of
X̄ that satisfies the desired trait distribution defined
by Eq. 8. We note that in practical applications, com-
puting a good instantiation of X̄ is not trivial. We
choose this method because it is comparable to ours,
and is to-date one of the most efficient methods that
optimizes the convergence time of such systems.

4.1 Example
To illustrate our method, we consider an example of N =
800 robots switching between M = 8 tasks. We sample
a random initial robot distribution X(0) with robots dis-
tributed among three tasks, and generate a random, feasible

1

2

3

4

5

6
7

8

(a) (b)

Figure 1: A strongly connected instance of a graph
with 8 tasks (nodes), and possibilities of switching
between tasks (edges). The system includes 4 traits.
The trait abundance is represented by a bar plot. (a)
Initial distribution (b) Desired distribution.

desired trait distribution Ȳ with robots distributed among
the remaining five tasks. The initial trait distribution is vi-
sualized in Fig. 1(a), and the desired trait distribution is
visualized in Fig. 1(b). The graph is generated randomly
according to the Watts-Strogatz model [22] (with a neigh-
boring node degree of K = 3, and a rewiring probability of
γ = 0.6; the graph is guaranteed to be connected). We set

k
(s)
ij,max = 1 s−1 for all edges. The robot community consists

of 3 species and 4 traits, and is defined as follows:

Q =





1 0 1 0
1 0 0 1
0 1 0 1





with

X⊤ · 1 = [231, 312, 257]⊤ (31)

We solve the system for Ȳ as shown in Fig. 1(b). We show
the evolution of the trait distribution in Fig. 2. The plots
qualitatively show how the desired distribution is reached
for each trait. Fig. 3 shows the ratio of misplaced traits
µ(Y) over time for the initial and desired trait distributions
depicted in Fig. 1. We run 100 iterations of the discrete mi-
croscopic model with method Explicit. The plot shows that
our solution reaches the desired trait distribution, and that
the trait error decreases exponentially. Initially, the micro-
scopic and macroscopic models show good agreement, up to
about t = 5 seconds. Afterwards, the stochasticity of the mi-
croscopic model forces the error ratio (which counts absolute
differences) to be larger than 0. Note that the latter result
depends on the noise intensity, and hence, the dynamics of
the system. Systems with slower dynamics achieve lower
average errors at steady-state.

4.2 Comparison of Methods
We compare the two optimization methods, Explicit, and
Implicit, and evaluate their performance with respect to
the metric in Eq. 30. We instantiate 40 random graphs
with M = 6 nodes, and random matrices Q with S = 4
species and U = 4 traits, and generate random desired trait

distributions Ȳ for each graph. We set k
(s)
ij,max = 2 s−1 for

all edges. The microscopic model is iterated 4 times on each
graph instantiation. For the method Implicit, we compute
a random robot distribution X̄ that satisfies the desired trait
distribution. We measure the time tµ,thresh at which the



Time [s]

D
is
tr
ib
.
o
f
tr
a
it

1

(a)

1

2

3

4

5

6

7

8

Time [s]
D
is
tr
ib
.
o
f
tr
a
it

2
(b)

Time [s]

D
is
tr
ib
.
o
f
tr
a
it

3

(c)

Time [s]

D
is
tr
ib
.
o
f
tr
a
it

4

(d)

Figure 2: Evolution over time of the trait distribu-
tion as specified by the distributions shown in Fig. 1.
Each subplot represents one trait, indicating the dis-
tribution of that trait over the set of tasks (task 1
is shown at the bottom and task 8 at the top).

system converges to a value µthresh = 2.5% of misplaced
traits.

Fig. 4 shows the results. The median of Explicit is able
to improve upon the median of Implicit by 21%. This
result is expected, as our method explicitly minimizes the
convergence time of the actual system (rather than maxi-
mizing the asymptotic convergence rate of an approximated
system). Also, we note that the spread of values between
the 25th and 75th percentiles is 43% smaller for Explicit,
showing that our method is more robust to different initial
conditions. Finally, we compute the error obtained through
method Explicit by comparing the analytical steady-state
distribution of traits (obtained by taking the eigenvectors
that correspond to the zero-eigenvalues of each rate matrix
K(s) and multiplying them by Q) with the desired trait dis-
tribution Ȳ. The median, 90th percentile and maximum
error from the steady-state to the desired trait distribution
are 0.108%, 0.572% and 0.812%, respectively. These results
demonstrate that, despite the fact that our method is not ex-
plicitly optimizing for the steady-state, it reaches a steady-
state error smaller than system noise (at steady-state).

5. CONCLUSION
We present a method that distributes a swarm of heteroge-
neous robots among a set of tasks with the goal of satisfy-
ing a desired distribution of robot capabilities among those
tasks. We propose a formulation for heterogeneous robot

µ
(Y

)

Time [s]

Microscopic
Macroscopic

Figure 3: Ratio of misplaced traits over time for
the initial and desired trait distributions depicted
in Fig. 1. The simulation was run with 800 robots.
The plot shows the macroscopic model as well as the
average over 100 iterations of the microscopic model.
The shaded area shows the standard deviation.

t µ
,t
h
re

sh
[s
]

Implicit Explicit

Figure 4: The plot shows the convergence time for
the optimization methods, evaluated on the micro-
scopic model, with tµthresh for µthresh = 2.5%, for 40
random graphs with M = 6 and random matrices Q
with 4 species and 4 traits. The boxplots show the
median and the 25th and 75th percentiles.

systems through species and traits, and show how this for-
mulation is used to achieve an optimal distribution of robots
by specifying the desired final trait configuration. To find
the optimal transition rates, we pose an optimization prob-
lem, and develop a solution based on an analytical gradient
that is computationally efficient and capable of producing
fast convergence times, even for large choices of traits and
species. Indeed, the gradient computation is fully scalable
with respect to the number of robots, number of species
and number of traits. We validate our approach on random
graph instantiations, and show that our baseline method
outperforms a classical alternative approach. We believe
that this method is well-suited to applications that control
large-scale teams of robots that need to converge quickly to
desired configurations as a function of their capabilities.

6. ACKNOWLEDGMENTS
The authors gratefully acknowledge the support of ONR
grants N00014-15-1-2115 and N00014-14-1-0510, ARL grant
W911NF-08-2-0004, NSF grant IIS-1426840, and TerraSwarm,
one of six centers of STARnet, a Semiconductor Research



Corporation program sponsored by MARCO and DARPA.

References
[1] T. Balch and L. E. Parker. Special issue on Hetero-

geneous Multi-Robot Systems. Autonomous Robots,
8:207–383, 2000.

[2] S. Berman, Á. Halasz, M. A. Hsieh, and V. Kumar.
Optimized Stochastic Policies for Task Allocation in
Swarms of Robots. IEEE Transactions on Robotics,
25:927–937, 2009.

[3] B. Charrow. Information-theoretic active perception for
multi-robot teams. PhD thesis, University of Pennsyl-
vania, 2015.

[4] J. Demmel, I. Dumitriu, and O. Holtz. Fast Linear
Algebra is Stable. arXiv.org, pages 1–26, 2007.

[5] B. P. Gerkey and M. J. Mataric. A Formal Analysis and
Taxonomy of Task Allocation in Multi-Robot Systems.
Interntional Journal of Robotics Research, 23(9):939–
954, 2004.

[6] Á. Halasz, M. A. Hsieh, S. Berman, and V. Kumar.
Dynamic Redistribution of a Swarm of Robots Among
Multiple Sites. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2007.

[7] M. A. Hsieh, A. Cowley, F. J. Keller, L. Chaimowicz,
B. Grocholsky, V. Kumar, C. J. Taylor, Y. Endo, R. C.
Arkin, B. Jung, F. D. Wolf, G. S. Sukhatme, , and
D. C. MacKenzie. Adaptive teams of autonomous aerial
and ground robots for situational awareness. Journal of
Field Robotics, 24:991–1014, 2007.

[8] M. A. Hsieh, Á. Halasz, S. Berman, and V. Kumar.
Biologically inspired redistribution of a swarm of robots
among multiple sites. Swarm Intelligence, 2(2-4):121–
141, 2008.

[9] E. G. Jones, B. Browning, M. B. Dias, B. Argall, and
M. Veloso. Dynamically Formed Heterogeneous Robot
Teams Performing Tightly Coordinated Tasks. Interna-
tional Conference on Robotics and Automation (ICRA),
pages 570–575, 2006.

[10] J. D. Kalbfleisch and J. F. Lawless. The Analysis of
Panel Data Under a Markov Assumption. Journal of
American Statistical Association, 80:863–871, 1985.

[11] B. Korte and J. Vygen. Combinatorial Optimization:
Theory and Algorithms. Springer-Verlag, Berlin., 2000.

[12] M. J. B. Krieger, J. B. Billeter, and L. Keller. Ant-like
task allocation and recruitment in cooperative robots.
Nature, 406:992–995, 2000.

[13] T. H. Labella, M. Dorigo, and J.-L. Deneubourg. Di-
vision of labor in a group of robots inspired by ants’
foraging behavior. ACM Transactions on Autonomous
Adaptive Systems, 1:4–25, 2006.

[14] A. Martinoli. Swarm Intelligence in Autonomous Col-
lective Robotics: From Tools to the Analysis and Syn-
thesis of Distributed Collective Strategies. PhD the-
sis, Ecole Polytechnique Fédérale de Lausanne (EPFL),
1999.

[15] L. Matthey, S. Berman, and V. Kumar. Stochastic
strategies for a swarm robotic assembly system. In
IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 1953–1958. IEEE, 2009.

[16] A. Mordecai. Nonlinear programming: analysis and
methods. Courier Corporation, 2003.

[17] V. Y. Pan and Z. Q. Chen. The Complexity of the
Matrix Eigenproblem. ACM Symposium on Theory of
Computing, pages 507–516, 1999.

[18] O. L. Petchey and K. J. Gaston. Functional diver-
sity (FD), species richness and community composition.
Ecology Letters, pages 402–411, 2002.

[19] D. Tilman. Functional Diversity. Encyclopedia of Bio-
diversity, 3:109–120, 2001.

[20] P. Tokekar, J. Vander Hook, D. Mulla, and V. Isler.
Sensor Planning for a Symbiotic UAV and UGV sys-
tem for Precision Agriculture. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 5321–5326, 2013.

[21] D. J. Wales and J. P. K. Doye. Global optimization
by basin-hopping and the lowest energy structures of
Lennard-Jones clusters containing up to 110 atoms. The
Journal of Physical Chemistry A, 101:5111–5116, 1997.

[22] D. J. Watts and S. H. Strogatz. Collective dynamics of
‘small-world’ networks. Nature, 393:440–442, 1998.


