
TiPeNeSS: A Timed Petri Net Simulator Software with
Generally Distributed Firing Delays

Ádám Horváth
University of West Hungary

Institute of Informatics and Economics
Bajcsy-Zsilinszky u. 9.

Sopron, Hungary
horvath@inf.nyme.hu

András Molnár
University of West Hungary

Institute of Informatics and Economics
Bajcsy-Zsilinszky u. 9.

Sopron, Hungary
molnaran@gain.nyme.hu

ABSTRACT
Performance analysis can be carried out in several ways,
especially in case of Markovian models. In order to inter-
pret high level of abstraction, we often use modeling tools
like timed Petri nets (TPNs). Although some subclasses
of TPNs (e.g. stochastic Petri nets (SPNs) [17, 19]) can
be handled analytically, a general timed Petri net is hard
to evaluate via numerical analysis1. However, the simu-
lation of SPNs or deterministic and stochastic Petri nets
(DSPNs) [16] are supported by many known tools (see, e.g.
[3, 20]), it is hard to find a simulation tool for timed Petri
nets with generally distributed (i.e., particular but arbitrar-
ily chosen) firing times2.

In this paper, we present TiPeNeSS (Timed Petri Net Simu-
lator Software) which supports the simulation of timed Petri
nets containing transitions with generally distributed firing
delays. The input of the software (the Petri net and the
parameters) is defined in an XML file, what allows us to
generate results in batch mode. Besides, we describe a case
study in which we optimize the frequency of the regular
maintenance in a manufacturing process.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support
Systems

General Terms
Modeling, Simulation, Software

1However, there exist some approaches for the numerical
analysis of non-Markovian models, these are either restricted
to special classes [8, 4, 10, 6], or use approximation meth-
ods [12].
2Although the specification of TimeNET claims that transi-
tions with generally distributed firing times are enabled, the
authors of this paper got only errors when tried to test that
part of the tool.

Keywords
Simulation, Timed Petri Net, General Distribution

1. INTRODUCTION
Some subclasses of timed Petri nets can be analyzed numer-
ically, such as stochastic Petri nets (SPNs) [17, 19], general-
ized stochastic Petri nets (GSPN) [15] or in some cases, the
deterministic and stochastic Petri nets (DSPNs) [16]. How-
ever, a general TPN is hard to solve analytically, e.g. the
TPN model of a manufacturing process, where the distri-
bution of the work phases are typically deterministic, while
the time between machine failures are assumed to be nor-
mally [7, 18] or gamma [13] distributed.

Although several tools exist for simulating Petri nets, we
could not find one which is able to simulate Petri nets with
generally distributed firing times. GreatSPN [3] has been
developed at the University of Turin since the late eighties
of last century, mainly for analyzing GSPNs. Later, a DSPN
module was also developed to GreatSPN [9]. TimeNET [20]
is a tool for analyzing and simulating DSPNs. Moreover,
the user manual of TimeNET [20] states that generally dis-
tributed transitions are also enabled, and the graphical user
interface ensures the use of generally distributed transitions.
However, we could not find a way to run a simulation with-
out errors when at least one generally distributed transition
was placed in the model. Besides, many other tools for an-
alyzing Petri nets are available (for a very thorough list,
see [1]). However, most tools do not fit for our purposes.
Many tools focus on other Petri net classes like SPNs, such
as Pipe [5] or SPNP [11]; or like queuing Petri nets (QPNs),
such as QPME [14]. Most software has its own graphical
user interface (GUI) which supports the design of Petri nets.
However, most of them cannot be driven in batch mode (only
via the GUI) which does not ease the generation of multi-
tudinous results.

In this paper, we present TiPeNeSS, a simulator software
for TPNs in which we can use general distribution for fir-
ing delays (e.g. normal, uniform or gamma distribution) in
addition to the distributions allowed in DSPNs (exponen-
tial, deterministic and zero-delayed). TiPeNeSS has three
main functions: i) investigation of stability in each place;
ii) transient and iii) steady state simulation. To ensure the
precision of the simulation, TiPeNeSS has a statistical mod-
ule which can determine the termination of the simulation
process based on precision parameters (maximal relative er-

SIMUTOOLS 2015, August 24-26, Athens, Greece
Copyright © 2015 ICST
DOI 10.4108/eai.24-8-2015.2261343

ror and confidence level). The software can be run using
a batch file without interacting with a graphical user inter-
face, since the Petri net and the simulation parameters are
described in an XML input file.

The rest of the paper is organized as follows. Section 2 pro-
vides a formal description of TPNs. In Section 3, we present
TiPeNeSS, our TPN simulator software, while Section 4 de-
scribes a case study in which we demonstrate an application
of TiPeNeSS through the evaluation of a manufacturing pro-
cess model. Finally, we summarize the paper and point out
the future plans in Section 5.

2. TPN FORMALISM
In this section, we provide a short introduction to TPNs,
while a detailed description with applications can be found
in [15].

TPNs are bipartite directed graphs with two types of nodes:
places and transitions. The places, graphically represented
as circles, correspond to the state variables of the system;
while the transitions, graphically represented as boxes, cor-
respond to the events that can induce a state change. The
arcs connecting places to transitions and vice versa express
the relation between states and event occurrence.

Places can contain tokens drawn as black dots within places.
The state of a TPN, called marking, is defined by the number
of tokens in each place. In this paper, we use the notation M
to indicate a marking in general. We will denote by M(p)
the number of tokens in place p in marking M . Now we
recall the basic definitions that are necessary for the rest of
the paper.

A TPN system is a tuple

(P, T, I, O,H,M0, τ, w, e),

where:

• P is the finite set of places. A marking M ∈ IN|P |

defines the number of tokens in each place p ∈ P .

• T is the set of transitions. The distribution of time
between the firings of t ∈ T has general distribution,
e.g. exponential, deterministic, normal etc. Note that
P ∩ T = ∅.

• I,O,H : IN|P | → IN are the multiplicities of the input
arc from p to t, the output arc from t to p, and the
inhibitor arc from p to t, respectively.

• M0 ∈ IN|P | is the initial marking of the net.

• τt : IN
|P | → IR is the mean delay for ∀t ∈ T (note that

τt may be marking-dependent).

• w : IN|P | → IR+ is the firing weight for ∀t ∈ TZ , where
TZ ⊂ T denotes the set of immediate transitions.

• et : IN
|P | → {R,E,A} is the execution policy or mem-

ory policy to be used for transition t, while R, E and
A denote resampling, enabling memory and age mem-
ory policy, respectively. Further description of mem-
ory policies can be found at the end of this section.

A transition is “enabled” if each of its input places contains
the “necessary” amount of tokens where “necessary” is de-
fined by the input function I. Formally, transition t is en-
abled in marking M if for all places p of the net we have
M(p) ≥ I(t, p). An enabled transition can fire and the firing
removes tokens from the input places of the transition and
puts tokens into the output places of the transition. The
new marking M ′ after the firing of transition t is formally
given M ′(p) = M(p) +O(t, p)− I(t, p), ∀p ∈ P .

The firing of a transition occurs after a given delay. The
delay associated with a transition has a specific distribution
whose parameter depends on the firing intensity of the tran-
sition and on the current marking. We define the effect of
the firing of transition t with an integer vector L(t), place
indexed, defined as: L : T → Nk and the ith entry of L(t)
is L(t)i = O(t, pi) − I(t, pi) for 1 ≤ i ≤ k and ∀t ∈ T .
For sake of avoiding cumbersome notation we assume that
@t, t′ ∈ T : t ̸= t′, L(t) = L(t′) and @t : L(t) = 0.

Based on the fundamental work of Marsan et al. [15], the
applied memory policies can be the following.

• Resampling (RS): At each and every firing, all tran-
sitions of the TPN are discarded, and new values of
timers will be generated (restart mechanism).

• Enabling memory (EM): At each firing, the timers
of all transitions that are disabled are restarted, while
the timers of transitions that are not disabled hold
their present value (continue mechanism).

• Age memory (AM): At each firing, the timers of all
transitions hold their present values (continue mecha-
nism).

3. TiPeNeSS, A TIMED PETRI NET SIMU-
LATOR SOFTWARE

In this section, we describe our solution for simulating timed
Petri nets with generally distributed firing delays.

3.1 The Structure of TiPeNeSS
The software requires a user defined parameter file which
contains the description of the investigated TPN model and
the simulation parameters. The simulation core reads the
input file and constructs the basic model with the defined
initial conditions. After initialization, the core simulates
the behavior of the model applying the simulation method
defined in the parameter file.

During the simulation, the change of the token distribution
is processed by the statistical module. The core updates the
statistical values of the investigated parameters based on the
results produced by the statistical module. The core contin-
uously checks the accuracy of the estimated values in order
to determine the fulfilment of the termination condition for
the simulation process. Upon finishing the simulation, the
core creates a result file in plain text format which contains
the short description of the model, the simulation parame-
ters and the estimated values of the investigated parameters.
The structure of TiPeNeSS is shown in Fig. 1.

Figure 1: The structure of TiPeNeSS.

3.2 The Core Module
The core module is responsible for the whole simulation pro-
cess. Its input is an XML parameter file, and its output is a
text file containing the expected token distribution and some
other parameters (e.g. precision parameters). To ensure the
precision of the simulation, the core module interacts with a
statistical module during the whole run time. The core mod-
ule is based on the use of an event queue which is the most
common simulation technique in event driven simulation.

Since one simulation run does not provide enough data to
obtain the behavior of the model, many samples are taken
usually to obtain the model properties. Several approaches
have been proposed to produce these samples (for details,
see [13]). In this work, we applied the replication/deletion
and batch means approaches [13].

Currently, TiPeNeSS supports the following types of inves-
tigations.

• Transient simulation

• Steady state simulation

• Stability analysis

Transient simulation runs for a fixed amount of simulated
time which can be set in the parameter file. This function is
mostly used to examine the estimated number of tokens after
a certain amount of time. In transient simulations, we must
use the replication/deletion approach to ensure the precision
of the simulation, since the batches cannot be considered
independent if they are not “appropriately long”.

On the other hand, steady state simulation is used to deter-
mine the steady state behavior of certain parameters. In this
investigation, we can use both the replication/deletion and
the batch means approaches, since we can use long batches
in order to ensure their statistical independency [13].

Finally, stability analysis is used to determine whether a
system parameter has a steady state distribution. Since sta-

bility is a prerequisite of running steady state simulation,
we may want to be sure of the stability of the system.

Regarding to the transition types of TPNs, the core module
supports different types of transitions based on the distribu-
tion of their firing delays. Currently, it can either be zero-
delayed (immediate transitions), deterministic, exponential,
normal or gamma distribution. In the future, we can imple-
ment additional types of firing delays, of course. To achieve
this, we need to implement only the cumulative distribution
function of the newly added distribution.

Since a generally distributed TPN requires the application of
different memory policies (see Section 2), we implemented
the policies in the core module. In the current version of
TiPeNeSS, this property can be defined at each transition
individually. Later, the interpretation of this property can
be extended to transition pairs.

3.3 The Statistical Module
The software contains a standalone statistical module which
provides statistical methods for the simulation. This module
allows us to calculate the sample mean which is used to
estimate the value of the investigated parameters.

In each iteration, we calculate the sample mean of an inves-
tigated variable as follows.

x̄n =

(
n−1∑
i=1

ti

)
· x̄n−1 + tn · xn

n∑
i=1

ti

,

where
∑n−1

i=1 ti denotes the cumulative weight of the previous
iteration, x̄n−1 denotes the mean of the previous iteration, tn
represents the current weight and xn stands for the current
value. Since we store the cumulative average of the previ-
ous iteration and its weight, the calculation of the weighted
average requires only constant cost in each iteration.

The sample mean gives an estimation of an investigated
parameter. However, it does not provide any information
about its accuracy. In order to measure the precision, we
need to calculate the confidence interval for the given param-
eter. The calculation of the confidence interval requires two
additional parameters: the sample variance and the sample
size. The sample variance can be calculated as follows.

Sn
2 =

n−1∑
i=1

ti

n∑
i=1

ti

Sn−1
2+

tn(xn − x̄n−1)
2

n∑
i=1

ti

+d2−2dx̄n+2dx̄n−1,

where Sn
2 and Sn−1

2 represent the variance for the current
and the previous iteration, respectively, while d is calculated
as d = x̄n − x̄n−1. Similarly to the previous equation, the
calculation cost of the sample variance is constant.

Besides, the statistical module can measure the accuracy of
the estimation based on the value of maximal relative error
which can be defined in the parameter file. This function
calculates the half-length of the confidence interval and the
maximal error, which is based on the sample mean of the in-
vestigated parameter and the user defined maximal relative

error. If the half-length of the confidence interval is smaller
than the computed maximal error, we can accept that the
estimation reached the desired accuracy (we assume that the
relative error does not exceed 0.15 and the sample size is at
least ten [13]). This condition can be used for parameters
having steady state distribution and their mean value is not
equal to zero.

3.4 The Parameter File
The input of the simulation is a user defined parameter file
which contains necessary information to execute simulations.
The parameter file is written in XML format, what provides
platform independency. Furthermore, it represents the hi-
erarchy of the defined elements, too. The parameter file
consists of two main parts: the model description and the
simulation parameters. First, we will present the model de-
scription through the sample of M/D/1/2/2 queue according
to Kendall’s notation (see Fig. 2).

Figure 2: The Petri net model of M/D/1/2/2 sys-
tem.

In the parameter file, we define our Petri net using the
<petrinet> tag as root, while its children can be places
(<place>) and transitions (<xyztransition>, where xyz
denotes the distribution of the transition). Places contain
the following sub-tags: <name> and <token>. The <name>
tag defines the place name; this element is mandatory and
it needs to be unique as it is used as a reference later on.
The <token> tag token is optional; it is used to specify the
initial number of tokens in the given place (if omitted, zero
is used as default value). For example, we can define place
Idle of Fig.2 as follows.

<place>
<name>Idle</name>
<token>2</token>

</place>

Since there are several different types of transitions, each
with its own set of properties, we apply unique tags for the
different distributions. The commonly used attributes are
the transition name, the input and output places, which
are independent from the distribution of transitions. The
<name> tag is mandatory and has to be unique as it used as
reference. The tags <inplace> and <outplace> are used
to define the connections between places and transitions, i.e.,
these tags are used for defining arcs. Both input and output
tags have two sub-tags: <name> and <arc>. The <name>
tag is mandatory, it is used to reference an already defined
place. The arc provides an option to assign weights to the
arcs. If omitted, the arc will be declared with the default
value of one. Among the arc weights, the zero value has a
special meaning, it denotes an inhibitor arc.

Now, we describe the different types of transitions and their
unique properties. Besides the previously described attributes,
immediate transitions have two additional sub-tags: <priority>
and <weight>. The <priority> tag is used to determine
which transition has precedence over the other concurrent
immediate transitions (higher number denotes higher prior-
ity). The <weight> tag is used to order firing weight to
immediate transitions being in conflict in a marking.

In our example, getServer is an immediate transition having
the following XML definition.

<immedtransition>
<name>getServer</name>
<inplace>

<name>Buffer</name>
<arc>1</arc>

</inplace>
<inplace>

<name>Capacity</name>
<arc>1</arc>

</inplace>
<outplace>

<name>Server</name>
<arc>1</arc>

</outplace>
</immedtransition>

Exponentially distributed transitions can be defined using
the <exptransition> tag. They have two sub-tags: <delay>
and <servertype>. The first is mandatory and denotes
the mean delay of the transition, while the second is optional
and defines whether the firing rate depends on the enabling
degree or not (infinite or exclusive server approach, respec-
tively [15]). If <servertype> tag is omitted, the transition
follows the exclusive server policy by default.

In our example, transition request is described as an expo-
nential transition that can be defined as follows.

<exptransition>
<name>request</name>
<servertype>infinite</servertype>
<delay>0.1</delay>
<inplace>

<name>Idle</name>
</inplace>
<outplace>

<name>Buffer</name>
</outplace>

</exptransition>

Transitions with deterministic delay can be defined using
the <dettransition> tag. Similarly to the exponential
transitions, deterministic transitions also have a <delay>
sub-tag which denotes the exact value of delay in this case.

Except the exponentially distributed transitions, we have
to define the memory policy for all delayed transitions using
the <memory> tag. The possible values are age, resampling
and enabling, representing the age memory, the resampling
and the enabling memory policy, respectively (the default
memory policy is the enabling memory policy).

In case of our M/D/1/2/2 queue, transition serve can be
described as follows.

<dettransition>
<name>serve</name>
<delay>0.06</delay>
<inplace>

<name>Server</name>
<arc>1</arc>

</inplace>
<outplace>

<name>Idle</name>
<arc>1</arc>

</outplace>
<outplace>

<name>Capacity</name>
<arc>1</arc>

</outplace>
</dettransition>

In case of other distributions, other distribution-specific pa-
rameters have to be defined. For example, normally dis-
tributed transitions have two specific parameters: instead of
the <delay> tag, the mean value and the standard devia-
tion have to be specified (tags <mean> and <deviation>)3.

Finally, the required and optional simulation parameters can
be described using the <system> tag which is the direct
sub-tag of <petrinet> tag in the XML hierarchy. In Ta-
ble 1, we collected the corresponding parameters.

4. SEQUENTIAL WORK PHASES IN MA-
NUFACTURING: A CASE STUDY

In this section, we present the strengths of TiPeNeSS by
modeling the operation of a production line considering the
machine failures and the regular maintenance process. Eval-
uating the model, we determine the optimal time interval for
the regular maintenance.

4.1 Production Lines in Manufacturing
A production line is a set of sequential operations in a man-
ufacturing system or factory, where the input of the first
operation is the raw material (such as metal ores, cotton,
or foodstuff), while the output of the last operation is the
product.

In such systems, it is crucial that the sequential operations
depend on each other. For example, if the second machine
in the production line breaks down, the elements pile up
on the output side of the first machine, while the machines
after the second machine remain unutilized. Hence, regular
maintenance is a commonly applied technique to alleviate
the negative effects of machine failures.

From modeling point of view, the model of a production
line consists of transitions with different distributions. The
work phases have typically deterministic delays, while the
time between machine failures follows the normal [7, 18] or
gamma [13] distribution in case of mechanical failures (in
case of electronic tools, the exponential distribution must
be applied). If a failure occurs despite of the application of
regular maintenance, the time needed to repair the failure
is exponentially distributed.

3Note that we use only the positive values given by the nor-
mal distribution.

4.2 A Sample Production Line
In the following sample, we model a production line with
three sequential operations to demonstrate the application
of TiPeNeSS. Without concretizing the functionality of the
machines, we assume that machine failures can occur due
to mechanical failures e.g. due to abrasion. The Petri net
model of the sample production line is depicted in Fig. 3.

If the system is up (no machines have to be repaired and
there is no maintenance), the raw material arrives in place
RawMaterial which is a queue of transition procedureA. The
service follows the FIFO policy: when a machine finishes
its current job, the first element of the queue is moved to
that machine, i.e., a token moves from place RawMaterial
to place InputA. After an element is served, it is moved
to the next queue (place AfterFirstStep), then to the next
machine (place InputB), and so on. Finally, with the firing of
transition procedureC, the element is considered completed
(a token is moved to place ManufacturedItems).

In case of a machine failure (transitions failureA, failureB
and failureC), the working machines can continue their work
if they have elements in their queue. However, we do not
allow the arriving of new elements at place RawMaterial un-
til the failure is repaired. A machine failure can occur only
in the case when the machine is currently working on an
element. In this case, the element is booked as refuse and
must be re-manufactured (i.e., if procedureA cannot be ex-
ecuted due to a machine failure, the current element must
be re-manufactured, and the remaining time of procedureA
must be re-generated, following the enabling memory pol-
icy). The time until the machine failure is repaired can be
modeled with an exponentially distributed random variable.
Therefore, transitions repairA, repairB and repairC are ex-
ponentially delayed.

To reduce the idle periods caused by machine failures, a reg-
ular maintenance process is done periodically. Under main-
tenance, no new elements are allowed to arrive in the sys-
tem, and the machines are stopped. When a maintenance
process is due (i.e., transition maintenanceTime fires), the
machines can finish their current work, but do not receive
new elements of the queue until the maintenance period is
over. If the works in progress are finished, the maintenance
process starts (i.e., a token is moved to place UnderMainte-
nance by the firing of immediate transition doMaintenance).
The manufacturing continues after the maintenance period
(by the firing of transition endMaintenance). If a machine
failure occurs when maintenance is needed, the repair of ma-
chines has priority over the regular maintenance process. It
means that while the repair of a machine holds, the main-
tenance will not be started. Unlike the machine failures,
the time interval of the regular maintenance can be pre-
dicted. Therefore, transition endMaintenance is determin-
istically delayed.

4.3 Finding the Optimal Scheduling of the Main-
tenance Process

To obtain the optimal scheduling of the regular maintenance
for our sample production line, we ran steady state simula-
tions in which we applied the batch means approach. We
give an overview of the precision parameters in Table 2,

Table 1: Overview of system parameters.
Parameter (tag) Possible values Description
<method> analysis; batchmean; repdel. The type of investigation can be stability analysis,

batch means or replication/deletion method, respectively.
<batch> Any positive double value. The length of batches (used only in case of stability

analysis and batch means method).
<terminatingtime> Any positive double value. The length of one individual run in case of

replication/deletion method.
<warmuplength> Any positive double value. The length of warm-up period.
<minsamplesize> Any positive integer value. The number of batches in case of batch means method

and stability analysis; the number of replications when
replication/deletion method is used.

<confidencetype> 1; 2; 3. The confidence level of 95%, 98% and 99%, respectively.
<accuracy> A double value x ∈ (0; 1). The value of maximal relative error.
<avgtoken> A place name defined in the model. A significant place where we estimate the average number

of tokens when steady state simulation is run.
<token> A place name defined in the model. A significant place where we estimate the number of

tokens at the and of a transient simulation run.
<outfilepath> The path of the result file. The results are collected in this file.

Figure 3: The Petri net model of the sample production line.

Table 2: Overview of the precision parameters.
Parameter Value
length of warm-up period 5000 hours
length of batches 3000 hours
confidence level 95%
maximal relative error 5%

while we collected the settings of the transitions in Table 3.

In the following, we present two investigations which help

to support the decisions in the above mentioned scheduling
problem.

Since the main goal of the investigations was finding the
optimal scheduling of the maintenance process, the run-
ning parameter of the simulation was the delay of transition
maintenanceT ime in both cases, while we fixed the other
parameters of Table 3.

In the first investigation, we ran steady state simulation in
order to obtain the ratio of down time for the system com-
ponents (machines). The ratio of down time consists of two

Table 3: Overview of transitions.
Transition name Distribution Memory policy Mean delay [hours] Deviation [hours]
startManufacturing deterministic AM 1/6
moveToA zero-delayed
procedureA deterministic EM 1/12
failureA normal EM 200 20
repairA exponential 2
repairA exponential 2
moveToB zero-delayed
procedureB deterministic EM 1/6
failureB normal EM 250 25
repairB exponential 2
moveToC zero-delayed
procedureC deterministic EM 1/10
failureC normal EM 300 30
repairC exponential 2
maintenanceT ime deterministic EM 10..500
doMaintenance zero-delayed
endMaintenance deterministic EM 1/2

components: one caused by machine failures, and the other
because we have to stop the system during the maintenance
process. Therefore, we can obtain the ratio of down time
for machine X by summing the average number of tokens
in place DownX and the average number of tokens in place
UnderMaintenance. The results are shown in Fig. 4.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500

R
at

io
 o

f
D

ow
n

T
im

e
[1

]

Time between maintenance processes [hours]

DownA
DownB
DownC

Figure 4: The ratio of down time as a function of
time between maintenance processes.

In Fig. 4, we can see that each machine has its own opti-
mal value depending on the frequency of failure occurrences.
However, the maintenance requires the stopping of the whole
manufacturing process in our model, so we must find a com-
mon value of 160 working hours for all machines of the sys-
tem.

In the other investigation, we ran transient simulation to
determine the throughput of the system for one year4. Fig. 5
illustrates the results.

The results of this investigation are consonant to the pre-

4We calculated with one shift and 2032 working hours.

 11500

 11600

 11700

 11800

 11900

 12000

 12100

 12200

 0 100 200 300 400 500

N
um

be
r

of
 m

an
uf

ac
tu

re
d

ite
m

s
pe

r
ye

ar
 [

1]

Time between maintenance processes [hours]

Number of manufactured items

Figure 5: The number of manufactured items per
year.

vious one’s, we can see that the maximal throughput can
be achieved if the maintenance process is scheduled in every
160 working hours (12143 manufactured items).

In both cases, we can see that too frequent scheduling of the
regular maintenance is not worth while, since the system
has to be stopped during the maintenance. On the other
hand, if we schedule the maintenance infrequently, the ratio
of down time will increase depending on the expected value
of the number of failures till the next maintenance process.

5. SUMMARY
In this paper, we presented TiPeNeSS, a simulator software
for TPNs having generally distributed delays. Besides the
description of the software components, we presented the
usefulness of TiPeNeSS through the optimization problem of
a manufacturing system. In this example, the strength of the
software are touchable, since the model of a manufacturing
system contains different types of transitions.

Our simulator software is under development, the current
version is available through an open source version control
system [2].

In the future, we plan to implement a graphical TPN editor
to TiPeNeSS in order to decrease the probability of errors
caused by the difficulties of editing the XML input file.

References
[1] List of Petri net tools on the web page of Department

of Informatics, University of Hamburg, Germany.
http://www.informatik.uni-hamburg.de/
TGI/PetriNets/tools/complete_db.html.
Online; accessed 3rd June 2015.

[2] The source code of TiPeNeSS. https://github.
com/molnaran/tipeness. Online; accessed 22nd
July 2015.

[3] S. Baarir, M. Beccuti, D. Cerotti, M. De Pierro, S. Do-
natelli, and G. Franceschinis. The GreatSPN tool: re-
cent enhancements. ACM SIGMETRICS Performance
Evaluation Review, 36(4):4–9, 2009.

[4] A. Bobbio and N. Telek. Markov regenerative spn with
non-overlapping activity cycles. In Computer Perfor-
mance and Dependability Symposium, 1995. Proceed-
ings., International, pages 124–133. IEEE, 1995.

[5] P. Bonet, C. M. Lladó, R. Puijaner, and W. J. Knot-
tenbelt. Pipe v2. 5: A petri net tool for performance
modelling. In Proc. 23rd Latin American Conference
on Informatics (CLEI 2007), 2007.

[6] G. Ciardo and C. Lindemann. Analysis of determinis-
tic and stochastic petri nets. In Petri Nets and Per-
formance Models, 1993. Proceedings., 5th International
Workshop on, pages 160–169. IEEE, 1993.

[7] C. for Chemical Process Safety. Appendix G: Statistical
Distributions Available for Use as Failure Rate Models,
pages 695–703. John Wiley & Sons, Inc., 2010.

[8] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi. Anal-
ysis of software rejuvenation using markov regenerative
stochastic petri net. In Software Reliability Engineer-
ing, 1995. Proceedings., Sixth International Symposium
on, pages 180–187. IEEE, 1995.

[9] E. Gilberto and S. Donatelli. Dspn-tool: A new dspn
and gspn solver for greatspn. In Quantitative Evalu-
ation of Systems (QEST), 2010 Seventh International
Conference on the, pages 79–80, Sept 2010.

[10] M. Gribaudo, M. Sereno, and A. Bobbio. Fluid
stochastic petri nets: An extended formalism to in-
clude non-markovian models. In Petri Nets and Per-
formance Models, 1999. Proceedings. The 8th Interna-
tional Workshop on, pages 74–81. IEEE, 1999.

[11] C. Hirel, B. Tuffin, and K. S. Trivedi. SPNP: Stochastic
petri nets. version 6.0. In Computer Performance Eval-
uation. Modelling Techniques and Tools, pages 354–357.
Springer, 2000.

[12] G. Horton. A new paradigm for the numerical simula-
tion of stochastic petri nets with general firing times.
In Proceedings of the European Simulation Symposium,
pages 129–136, 2002.

[13] W. D. Kelton and A. M. Law. Simulation modeling and
analysis. McGraw Hill Boston, MA, 2000.

[14] S. Kounev, S. Spinner, and P. Meier. Qpme 2.0-a tool
for stochastic modeling and analysis using queueing
petri nets. In From active data management to event-
based systems and more, pages 293–311. Springer, 2010.

[15] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and
G. Franceschinis. Modelling with Generalized Stochastic
Petri Nets. John Wiley and Sons, 1995.

[16] M. A. Marsan and G. Chiola. On Petri nets with deter-
ministic and exponentially distributed firing times. In
Advances in Petri Nets 1987, pages 132–145. Springer
Berlin Heidelberg, 1987.

[17] M. K. Molloy. On the Integration of Delay and Through-
put Measures in Distributed Processing Models. PhD
thesis, UCLA, Los Angeles, CA, 1981.

[18] H. Pham. System software reliability. Springer, 2007.

[19] F. J. W. Symons. Modeling and Analysis of Commu-
nication Protocols Using Numerical Petri Nets. PhD
thesis, University of Essex, 1978.

[20] A. Zimmermann and M. Knoke. TimeNET 4.0: A soft-
ware tool for the performability evaluation with stochas-
tic and colored Petri nets; user manual. TU, Profes-
soren der Fak. IV, 2007.

