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ABSTRACT
Hybrid systems such as Cyber Physical Systems (CPS) are
becoming more important with time. Apart from CPS there
are many hybrid systems in nature. To perform a simulation
based analysis of a hybrid system, a simulation framework is
presented, named SAHISim. It is based on the most popular
simulation interoperability standards, i.e. High Level Ar-
chitecture (HLA) and Functional Mock-up Interface (FMI).
Being a distributed architecture it is able to execute on clus-
ter, cloud and other distributed topologies. Moreover, as it
is based on standards so it allows many different simulation
packages to interoperate, making it a flexible and robust
solution for simulation based analysis. The underlying al-
gorithm which enables the synchronization of different sim-
ulation components is discussed in detail. A test example
is presented, whose results are compared to a monolithic
simulation of the same model for verification of results.

Categories and Subject Descriptors
I.6.0 [Simulation and Modeling]: General

Keywords
High Level Architecture, Functional Mock-up Interface, Mod-
elica, OpenModelica, Simulation Interoperability, Hybrid Sim-
ulation, Co-simulation, Heterogeneous Simulation

1. INTRODUCTION

Standardized Architecture for Hybrid Interoperability of Sim-
ulations (SAHISim) is a newly proposed framework. It sup-
ports distributed simulation by conforming to High Level
Architecture (HLA) [7]. It is flexible and robust; because
individual federates can be FMI [2] components (Functional
Mock-up Units (FMUs)). The purpose of developing SAHISim
is to provide simulation engineers a platform which

• Supports interoperability among different simulation
packages.

• Is able to add parallelism through distribution

• Supports hybrid simulation

Simulation interoperability is becoming very important
in modern research and analysis. Because there are so many
specialized simulation packages for different types of sys-
tems, it is appealing to use specialized simulation packages
for any two or more domains and couple them to analyze
results of the system. This saves considerable effort of de-
veloping and testing a new simulation package which could
cover many domains. This is similar to the re-usability trend
humanity has enacted in every other domain.

Interoperability among simulations becomes more vital when
it can offer parallelism through distribution. Because
simulation is established as a good method of verification,
large scale simulations are becoming appealing in industry
to verify policies and designs. Large scale simulations re-
quire large amount of computing resources. Running large
scale simulations on monolithic platforms can result into re-
source starvation. By distributing the execution of different
subsystems onto different machines, parallel execution can
improve the overall performance. It can be used to avoid
resource starvation by adding more remote resources.
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Simulation of hybrid systems has been a major challenge
for researchers in the field of modeling and simulation. It
has become even more important due to intermix of Infor-
mation and Communication Technology (ICT) with other
technologies. Due to the discrete aspects of ICT, its cou-
pling with any continuous physical system leads to a hybrid
system. Interoperability becomes essential in this scenario,
because like other domains ICT has its own breed of special-
ized simulation packages. Coupling an ICT oriented simula-
tion package with a simulation package for a physical phe-
nomenon requires both interoperability and hybridization of
the simulation.

In next section previous approaches to hybrid system sim-
ulators are discussed. Then the simulation algorithm im-
plemented in SAHISim framework is discussed in detail in
section 3. After understanding the underlying working of
the framework, results of a test example are presented in
section 4, followed by a brief conclusion.

In the presented paper, major focus is on developing a syn-
chronization algorithm for hybrid systems. The algorithm,
with a little effort, can be adapted to any platform, in that
case though, it will lose some functionality. For example,
if it is implemented without the HLA then it will lose the
ability to create simulation on distributed environments. If
something else is placed instead of HLA then it will lose its
standardized format. FMUs are the basic simulation com-
ponents of the framework. If FMUs are replaced by some
other components then again it will lose its standardized
format. Nevertheless, the presented algorithm serves well to
facilitate a distributed hybrid simulation.

2. RELATED WORK
Due to introduction of ICT into power grids management,
it has become vital to simulate power grids in conjunction
with ICT infrastructure. In recent past there have been
quite a number of efforts to couple ICT network simulators
with power system simulators [11] to simulate cyber phys-
ical energy systems, or to simulate smart grids [14]. Most
smart grid simulators do not try to couple more than one
continuous systems. Only a continuous power system sim-
ulator is coupled with a discrete network simulator. In this
case the system formed does not have any algebraic rela-
tionship among simulation components, which makes things
much easier and manageable.

When a simulation has more than one continuous simulators
in the federation, things become much more complex. Many
real world scenarios require such a simulation. For example,
a complex energy system simulation may also need to cou-
ple thermal energy simulator along with power and network
simulators. In case of more than one continuous simulators,
coupling may form a Differential Algebraic Equation (DAE)
with index ≥ 1. When such tightly coupled systems are inte-
grated over time domain, explicit methods normally do not
produce good results [6]. The presented algorithm can deal
with any number of continuous or discrete event simulators
coupled with each other.

There have been other attempts to orchestrate hybrid sim-
ulations (alternatively called as “heterogeneous simulation”)
for example, Discrete EVent Specification (DEVS). DEVS

provides a systematic way to convert a continuous simula-
tor into a discrete event simulator [4]. In this way there
is no difference left in coupled continuous or discrete event
simulation. Although, there are still some questions related
to its stability [3]. The biggest disadvantage of DEVS is its
lack of interoperability with other simulation paradigms. In
order to orchestrate a DEVS based federation all simulation
federates must conform to DEVS specification.

Ptolemy II is another solution which aims to provide hybrid
simulation platform. According to some [9] the Ptolemy
Discrete Event Model Specification (PDEMS) can be con-
sidered equal to DEVS. Ptolemy II is supplemented by sup-
port for FMI [12], which makes it more usable in terms of
interoperability than DEVS. However, Ptolemy II is mono-
lithic in nature and there is still a lot of work to be done
to make it distributed in nature. Secondly, there are some
underlying restrictions imposed by Ptolemy II kernel which
makes it difficult to implement new synchronization algo-
rithms in Ptolemy II. Lasnier et al. [8] have used feder-
ates implemented using Ptolemy with HLA. They use the
Discrete Event (DE) director of Ptolemy for federate imple-
mentation, which cannot be better than the discretization
technique proposed by DEVS experts.

Techniques like [8] and [13] use nonzero lookahead based tim-
ing services of the HLA. They can be considered as explicit
and hence less stable [6]. They are explicit, because for a
DAE predicting “precisely” when next event will occur is not
possible without actually integrating the DAE. In case of a
tightly coupled system of DAEs modeled as separate feder-
ates, it is impossible to know the exact time of an event of a
federate independently. In such a situation the guess work
involved in setting the lookahead value and length of time
step makes the solution even more erroneous.

3. DESCRIPTION OF THE ALGORITHM
The underlying execution of simulation using SAHISim frame-
work is governed by a master-slave algorithm. The master
algorithm works like an orchestrator. It directs the slaves
to perform some action by sending them commands. The
slave algorithm is a state machine, whose states are changed
based on the commands received from the master. The ac-
tual numerical integration is performed at salve only, but
master has to check for convergence. To check convergence,
master needs to know the values of state variables at each
iteration. Based on the values of state variables, master
also changes the step size. Handling of discrete event is also
dependent on the master. The slave which experiences a
discrete event informs the master about the event, and then
master orchestrates the method to handle it.

3.1 The master algorithm
The algorithm shown in figure 1a describes the flow of mas-
ter. The master algorithm has only one instance for one
simulation federation. There is no limitation on the number
of slaves.

Important to mention is the decision state“Is discrete event?”
in figure 1a. This is a point where the algorithm gets into
a specialized flow of discrete event handling. If there is no
discrete event in the system, which means that all the sub-
systems are continuous then this path is never executed.
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(c) State machine of the slave.

So the algorithm works fine for both hybrid and continuous
systems.

3.2 Slave State Machine
The slave works like a state machine. Figure 1c shows that
how different commands take slave from one state to an-
other. State based execution is essential for a slave to avoid
ambiguities. State based execution ensures that a slave will
always keep following the correct path. Highlighted in red
are the states which have a branching factor greater than
1. From these states a slave may go in wrong direction of
execution if there was no method of synchronization.

3.3 Working of Algorithm
The mathematical motivation for the presented algorithm
comes from the Waveform Relaxation (WR) algorithm [10].
The WR algorithm is only focused on the continuous simula-
tions and does not mention handling of discrete events. The
presented work augments the WR algorithm by introducing
the logic of handling discrete events. The WR algorithm is
based on the idea of Banach spaces, or fixed point iteration
[5]. The idea is, if there is a system of Ordinary Differential
Equations (ODEs), then if the state based representations
of ODEs are separated in a way that performing a WR iter-
ation is contractive in nature, then the system of equations
is guaranteed to converge at each time step [10]. From one
time step to another WR iteration is performed repeatedly,
and at each time step the system converges at a single point,
called the fixed point. In order to have a successful separa-
tion of ODEs few guideline are mentioned in the original
work [10]. The WR iteration is a very simple phenomenon
itself. Figure 2 shows the execution cycle of a WR itera-
tion. All the ODE based subsystems are evaluated at time

tn+1. The output of each subsystem is propagated to other
dependent subsystems. The output values of one subsystem
become the inputs for others. The time is rewound to tn
and now the state variables of each subsystem are evaluated
again at tn+1. Continuing in this way, after few iterations
the fixed point is reached, then the same procedure is used
for tn+2, tn+3 , so on and so forth. Here tn is termed as a
“communication point”.

Subsystem1 

Subsystem2 

Internal integration 

Internal integration 

Tn Tn+1 

1.2 

1.1 

Figure 2: Waveform Re-
laxation iteration. In-
tegration of one subsys-
tem from time Tn to
Tn+1 is completely inde-
pendent. The numeri-
cal solver of a subsystem,
its internal step size or
any other related informa-
tion is completely isolated
from outer working of the
algorithm.

3.4 Explanation of Commands
The slave algorithm only follows the commands, so it is
very important to understand their meaning. The actions
taken to follow the commands are straight forward. The
“REWIND” command takes the FMU back in time. This
means that the time and state variables of the FMU are
set to the values converged at the end of previous com-
munication step. The “ADVANCE TIME” is the command
where actual integration of the subsystem (here FMU) is
done. The command takes a parameter, which is the “time”
to which an FMU should integrate. This is the time tn
mentioned earlier at which repeated WR communications



occur for convergence. The “ABORT ITERATION” com-
mand is a level stronger than “REWIND” command. The
“ABORT ITERATION” command not only goes back in
terms of time and state variables, but it also reverts to in-
puts valid at the end of previous successful communication
step.

The“SYNCH”command is just used for the synchronization
purpose. On receiving “SYNCH” command a slave sends its
time to the master. Immediately after sending “SYNCH”
command the master goes into an infinite loop until it re-
ceives updates from all the FMUs. It is a subject of detailed
discussion how positioning this command correctly ensures
correct order of execution. The proof is omitted for the sake
of brevity.

The“SHARE DATA”command asks all FMUs to share state
variables. The sharing happens with the help of object man-
agement services of HLA. As a rule of thumb one state vari-
able must be published by only one federate, but it can be
subscribed by many.

The working of commands“SHARE DATA NO DISCRETE”
and“SHARE DATA ONLY DISCRETE”is just the same as
“SHARE DATA”, but there are semantic differences. Both
of these commands are only used when processing a dis-
crete event. The“SHARE DATA NO DISCRETE”initiates
a change in the slave state machine. On receiving this com-
mand it is known that there is a discrete event processing
going on. It asks salves to share all states except the discrete
ones. The “SHARE DATA ONLY DISCRETE’ command
is executed only once in an iteration. In result the internal
behavioral change necessary to occur due to a discrete event
is accomplished at once.

The command “END ITERATION” is issued when the con-
vergence is achieved for one communication step. On receiv-
ing this command an FMU closes the internal integration
step and prepares for the next communication step.

3.5 Processing Discrete Event
First of all, this should be kept in mind that before pro-
cessing the discrete event the iteration where the discrete
event was detected has already been aborted. Abortion of
the iteration means that all the FMUs go back to the state
(including input variables) where they were at the end of
the last communication step. The easiest way to process
the discrete event is to reduce the step size to minimum and
keep on progressing the simulation. Decreasing the step size
to minimum ascertains that the precise time of event cannot
be missed by far, which reduces the chances of error prop-
agation. The simulation with minimum step size continues
until the discrete event has occurred again. After the it-
eration in which discrete event occurs, the master switches
back to the normal mode of execution.

3.6 HLA Timing Services
Time Advance Request (TAR) and Time Advance Request
Available (TARA) services are used in collaboration at both
master and slave level. The step size is calculated by the
master at the end of each communication point. Before con-
vergence TARA service is used repeatedly by the master
and the slaves, to get the updates. Once the convergence is

achieved and “END ITERATION” command is issued, the
TAR service is invoked by the master and slaves to close the
episode. In this way any discrete event simulator using the
same services will not have any problem in co-simulation.

For clarity it is important to mention that when a feder-
ate issues TARA request with time t0 then it announces
that it may send more updates at the same time t0. Sim-
ilarly, it is ready to accept more updates from other feder-
ates at t0. Once the master decides that it is done with the
iteration and there are no more updates needed, it issues
“END ITERATION” command with TAR at time t0, sub-
sequently all slaves also issue TAR. After issuing TAR any
federate can send an update only at a time t0 + ε for any
ε > 0.

3.7 Communication Step Size Control
Step size control offers many advantages in any numerical
integration algorithm. Implemented correctly, it can signifi-
cantly enhance the performance of the algorithm. Here too,
the communication step size control offers many advantages.
Most importantly, in a distributed simulation more com-
munication steps mean more communication, which means
lesser performance. So increasing the communication step
size to the maximum where the solution remains valid is
very beneficial.

Looking at the figure 2, it is easy to understand that separat-
ing the ODEs means that some or all of the sate variables in
subsystems are going to grow independent of partial deriva-
tives of each other. Mathematically speaking, suppose there
is a system given in equation 1

ẏ = f(y, p) (1)

The state vector y contains n state variables
y = y1, y2, y3, . . . , yn. To perform the numerical integra-
tion of the system, if an implicit method is used, then the
Jacobian of the system will be n × n matrix, containing
partial derivatives of all the state variables with respect to
each of them. Partitioning the system in two (equation
2) means that the Jacobian of each subsystem is also re-
duced to some degree. If ŷ = y1, y2, y3, . . . , yi and ỹ =
yi+1, yi+2, yi+3, . . . , yn, then this means that state variables
in ŷ are being evaluated without their partial derivatives
with respect to yi+1, yi+2, yi+3, . . . , yn. Similar is the case
of ỹ. This causes divergence in the solution. If the diver-
gence remains in the realm where the system remains defined
then it is possible to recover the error through fixed point
iteration. If not, then this means that the gap between two
communication steps is too large.

˙̂y = f̂(ŷ, p̂)

˙̃y = f̃(ỹ, p̃)
(2)

Following the idea of divergence, apart from error tolerance,
there is an additional parameter introduced, which is called
as “divergence tolerance” told. This is tolerance for the error
caused by divergence. If the state variable vector, as a result
of initial guess at the start of WR iteration, is yi, and at the
end of WR iteration after convergence is yf , then the error
ed caused by divergence is given in equation 3.

ed = ‖yf − yi‖2 (3)
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Figure 3: Variation of communication step size during pro-
cessing of discrete event.

At the end of each WR iteration the communication step
size is either increased or decreased by some percent, based
on the fact that ed + τ0‖yf − yi‖max < told or
ed + τ0‖yf − yi‖max > told. Here τ0 is a small positive value
used for normalization. As mentioned in section 3.5, during
processing of discrete event, the communication step size
is intermediately reduced to minimum. After the discrete
event, communication step size takes some time to recover
its value. At that moment the mechanics of communica-
tion step size control become evident. Figure 3 shows the
phenomenon by zooming into that situation.

4. TEST CASE
To check the correctness of algorithm a test system is used
for simulation. It is first simulated using the OpenModel-
ica1. The results are compared with the SAHISim algorithm
presented earlier. The system is very popular hybrid system
i.e. a ball being dropped from a height on stairs, namely a
“bouncing ball on stairs”. The system is given by the system
of equations 4. The discrete part is given by algorithm 1

ẋ = vx

ẏ = vy

v̇x = −c0vx
v̇y = −g − c1vy − contact((y − stair)c2 + c3vy)

(4)

Here g is the gravitational constant, while c0,c1, c2 and c3
are few constants facilitating the phenomena of friction, air
resistance, damping and mass of the ball. The variables
stair and contact represent discrete variables. The variable
contact shows that the ball is in contact with the floor or
not. When contact = 1 the system shifts its behavior imme-
diately at that point. This is what is called as “behavioral
state change”. The variable stair shows that on which step
of the stair ball is currently bouncing. Initially, its value is
N used in algorithm 1.

Figure 4 shows how different FMUs are associated to each
other, via their state variables. All the subsystems are in
form of FMUs, which shows the ability of SAHISim frame-
work to generically host any simulation comprising of com-
ponents conforming to FMI. Figure 5 shows the simula-
tion results of all continuous state variables, as simulated

1https://www.openmodelica.org/

Algorithm 1: Discrete State Decisions

begin
if (y < stair) then

contact← 1
end
else if (y > stair) then

contact← 0
end
if (x−N + 1 + stair > 0) then

stair ← stair − 1
end

end

Vx, Vy X, Y 

Stair, 

Contact 

Vx,Vy 

Y 

X,Y Stair, 

Contact 

Figure 4: Division and in-
terdependence of different
subsystems. Arrows show
information flow. Square
element shows discrete
component while circular
show continuous.

by OpenModelica. The results of SAHISim simulation are
shown in figures 5. It is clear that the over all behaviors of
both systems are similar, with little differences.

For the presented run, the value of “divergence tolerance”
was told = 1× 10−3. Although, the value is relatively large,
using a smaller value makes results more accurate, but that
causes more communication steps and hence performance
deteriorates.

5. CONCLUSION
The paper presents Standardized Architecture for Hybrid
Interoperability of Simulations (SAHISim). In depth dis-
cussion on the working of synchronization algorithm and
data sharing using HLA services is presented. The use of
SAHISim framework is very easy, it abstracts away tedious
configuration details of HLA and makes it very easy for the
user to orchestrate a federated simulation. A generic thin
layer is implemented to enable the use of FMUs as feder-
ates of the simulation federation. Enabling FMI makes the
solution very flexible because there are more than forty sim-
ulation packages2 either supporting or planning to support
FMI. Currently only FMI 1.0 compliant components are sup-
ported by SAHISim. The main reason is that FMI 2.0 is not
yet supported by open source simulation packages.

The algorithm used by SAHISim is discussed in detail. The
use of presented algorithm is not tied to the use of SAHISim.
It can be used in many different ways, independent of SAHISim
framework. A test example comparing the results with a
monolithic simulation package (OpenModelica) shows the
correctness of the results. The results are promising and in-
spire further development. There are few problems still to
be tackled. Currently, individual subsystems are integrated
using self-developed solvers. In order to use industry level
solvers it is important to make few changes in them. The

2https://www.fmi-standard.org/tools
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Figure 5: On left the results from SAHISim are shown, on right are the results obtained from OpenModelica.

most important change is to be able to rewind the solver
to the previously calculated state. If professional solvers
can incorporate this change, then it will enable their use in
SAHISim framework, making it even more robust.
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