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ABSTRACT
Intel’s newly-announced low-cost and high precision RealSense
3D (RGBD) camera is becoming ubiquitous in laptops and
mobile devices starting this year, opening the door for new
applications in the mobile health arena. In this paper, we
demonstrate how the Intel RealSense 3D camera can be used
for low-cost gaze tracking and passive pulse rate estimation.
We develop a novel 3D gaze and fixation tracker based on
the eye surface geometry as well as an illumination invari-
ant pulse rate estimation method using near-infrared images
captured with RealSense. We achieve a mean error of 1 cm
at 20 − 30 cm for the gaze tracker and 2.26 bpm (beats per
minute) for pulse estimation, which is adequate in many
medical applications, demonstrating the great potential of
novel consumer-grade RGBD technology in mobile health.
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1. INTRODUCTION
Gaze provides a wealth of information for human-computer
interaction, particularly as an indicator of attention in med-
ical diagnosis (e.g., autism screening [1, 2] and child emo-
tion studies [3]). In such applications, detecting gaze to a
computer monitor region (e.g., a quadrant of it), on-screen
window, or body part is all that is needed. Those applica-
tions are often available only in lab settings using expensive
equipments like Tobii eye trackers [4].

Heart rate (pulse) is a critical vital sign to assess the phys-
iological state of a subject. In many applications, it is pre-
ferred or even required to measure the heart rate, e.g., of
a patient, in a passive and remote manner. Recent studies
validated the concept of detecting pulse passively from face
color variation in a video [5, 6]. The cyclical movement of
blood from the heart to the head via the abdominal aorta
and the carotid arteries causes the head to move or face
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color to vary in a periodic way. However, those methods are
known extremely sensitive to illumination variations. After
all, given the numerous factors causing skin color fluctua-
tion, changes from the cardiac pulse is subtle.

In this paper, we focus on low-cost, scalable and real-time
analysis of human gaze and pulse for unique medical diag-
nosis applications, using Intel’s newly-announced low-cost
RealSense 3D (RGBD) camera. We thereby demonstrate
that such devices provide an integrated (RGB, depth, and
infrared) very low-cost sensor with critical health applica-
tions.1 We first present a real-time gaze tracker from point
clouds of the eye’s scleral and iris surfaces acquired with
RealSense. Unlike related techniques that employ 3D data
in preprocessing steps [7, 8], require multiple camera units
[7], or infer eye geometry from 2D images [9], we propose
to exploit direct measurement of eye surface geometry cap-
tured by the RGBD camera. RealSense cameras infer depth
information from a latent near-infrared (NIR) channel. We
then experimentally demonstrate that pulse can be reliably
estimated from faces in these near-infrared images. Such
observation enables illumination-invariant passive heart rate
estimation, and significantly extends its usage to low-light
applications. The proposed framework for the measuring
of critical health and medical signs is advantageous due to
infrared structured illumination cameras’ affordability, in-
creasing availability, small form factor, low power consump-
tion, and performance under low-light conditions.

2. METHODS
2.1 Gaze Tracking
Eye surface geometry is defined by the approximately spher-
ical scleral and corneal surfaces, as illustrated in Figure 1a.
When imaging the human eye, however, infrared structured
illumination in depth cameras produce sclera and iris point
clouds only because the cornea itself is transparent (Fig-
ure 1b). The iris point cloud is of interest due to its geomet-
rical relationship with the eye’s optical axis or gaze, which
is the line passing through the fovea center and the pupil’s
center. Notably, the iris is a shallow cone that surrounds
the pupil and is oriented perpendicularly to the optical axis
[11]. Thus, we propose a non-ellipsoidal eye surface model.
If approximated as planar, the iris normal vector is paral-
lel to the optical axis and consequently parallel to the eye’s
gaze. Therefore, the iris point cloud and the pupil center

1While the exact production cost of the sensor is not public,
is known to be in the order of low tens of dollars ($10-20),
and known to have added very little cost, if at all, to current
devices.
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(a) Eye cross-sectional anatomy [10]. (b) Eye surface point cloud. (c) Pupil detection. (d) Iris segmentation.

Figure 1: Eye surface imaged by the RealSense camera.

in 3D space provide sufficient information to estimate gaze.
We then develop and experiment a 3D fixation tracker that
estimates the binocular fixation point on a known target
surface, e.g., a computer screen or a car window, using si-
multaneous intersecting gaze estimates from corresponding
left and right eyes.

Our gaze tracker consists of infrared segmentation and point
cloud fitting. Pupil detection exploits poor reflection of
(near) infrared illumination (860 nm as used in RealSense)
back through the pupil, which produces a dark pupil in the
infrared images. Given an infrared eye image, pupil detec-
tion identifies as the pupil the largest dark blob through
thresholding and connected-components analysis (Figure 1c).
Iris segmentation (Figure 1d) exploits the pupil-iris topo-
graphic relationship to expand the pupil region to include
the iris using active contours [12]. Despite correspondence
between a given infrared image and its derived point cloud,
mapping the 2D pupil center image coordinates into the
point cloud is nontrivial due to relatively poor infrared re-
flectivity through the pupil. Consequently, the pupil region
in the point cloud is frequently filled with invalid or distorted
depth values as shown in Figure 2a. Plane-based pupil map-
ping, Figure 2b, rejects the influence of distorted points, and
constructs a non-ellipsoidal 3D eye surface model.

Binocular fixation (of both eyes) provides a convenient in-
ternal constraint during gaze estimation to further improve
monocular (independent) gaze estimates. In applications in-
volving devices such as laptops and tablets, requiring that
the fixation estimate lie on a surface further constrains gaze
estimation. Consequently, the fixation target estimation,
Figure 2c, uses the pupil center and fixation target search
spaces to estimate the binocular fixation target, which is the
point where the optical axes of both eyes intersect. This non-
limiting constraint further improves gaze estimation. Fi-
nally, a bias field correction (computed only once) offsets the
raw fixation estimates to compensate for target surface and
depth camera coordinate system variations and calibration
inaccuracies; Figure 3. This illustrates that the proposed ap-
proach can address the type of inaccuracies expected in com-
mercial products and consumer scenarios that are not neces-
sarily considered in professional laboratory devices such as
Tobii high-end eye-trackers.

2.2 Pulse Rate Estimation
From the infrared and depth images, face detection and
landmark tracking is performed to segment the cheek area
of the face after which the average intensity is computed. A
global self-similarity (GSS) filter and several temporal filters
[5] are applied before computing the pulse frequency.

The Viola-Jones face detector [13] combined with a super-
vised decent method [14] is used to track facial landmarks
in the infrared image (Fig. 4a). Next the connected com-
ponents of the depth image are computed (Fig. 4b). The
landmarks are then mapped from the infrared image to the
depth image and the connected component, excluding back-
ground, containing the majority of facial landmarks is de-
termined to be the face (Fig. 4c). Morphological operations
such as erosion and hole filling are then performed on this
region before using it as a mask to segment the face region
in the IR image (Fig. 4d). Using the landmarks, the cheek
is then extracted be selecting the area beneath the eyes and
above the mouth (Fig. 4e). The temporal data from this
region, averaged, is used for further analysis. Note that the
3D information is beneficial in tracking and detecting the
region of interest for the IR measurements.

In the next step, Figure 5, a global self-similarity filter [15]
is used to denoise the signal. Next, temporal filters [6]
are applied. Firstly, a detrending filter [16] is used to re-
duce slow and non-stationary trends of the signal. A sec-
ond moving-average filter is then applied to remove random
noise. Lastly, a Hamming window based finite impulse re-
sponse bandpass filter with cutoff frequency of [0.7, 4] Hz
is used to exclude frequencies outside the [0.7, 4] Hz range,
which corresponds to 42 to 240 bpm. After filtering, the
pulse signal is converted to the frequency domain using FFT
and its power spectral density distribution is estimated us-
ing Welch’s method [17]. The frequency with the maximal
power response is assumed to be the pulse frequency fp,
and the average pulse rate measured from the input video is
computed as

Pvideo = 60fp.

3. EXPERIMENTAL RESULTS
For testing the gaze tracking framework, corresponding in-
frared and depth images were taken at random fixation tar-
get positions in sets of ten images. In Fig. 3, half of the
dataset at each target was used for bias field training, and
the remaining half was used as the test dataset. Final fixa-
tion estimates are shown for the test dataset. For purposes
of illustration, four target locations are depicted from the
captured dataset. Table 1 lists the associated mean and
standard deviation of error for the x and y directions and
the on-screen displacement. The accuracy is more than suffi-
cient for multiple tasks, e.g., child mental health tests (where
pictures on the left or the right of the screen need to be se-
lected, e.g., in autism or anxiety studies), and active-window
selection in human computer interaction.

For testing the pulse framework, a dataset consisting of ten
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(a) Pupil distortion in point clouds.

-10

-15

x (mm)

-20

-25
20

25

y (mm)

30

35

312

314

316

318

320

z 
(m

m
)

iris surface

best-fit plane

pupil center

(b) Plane-based pupil mapping.
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(c) Joint binocular fixation estimation.

Figure 2: Point cloud fitting in gaze estimation. (a) Eye point cloud surface colored with infrared image showing distorted
position near the pupil (blue arrow) and gaps within the pupil (red arrows). (b) Best-fit plane (red) and pupil mapping (blue)
for iris region point cloud surface. (c) Example point cloud depicting initial gaze estimates (blue) based on iris plane normals
without the fixation constraint and the fixation estimate (red) on the target surface (black).
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(a) Bias field.
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(b) Raw fixation estimates
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(c) Final fixation estimates

Figure 3: Fixation estimates at four example positions on the computer screen. (a) Bias field correction (computed only once)
offsets raw fixation estimates compensating system inaccuracies. This provides an example of the importance of adjusting for
challenges common in consumer scenarios. (b) Raw fixation estimates (+) and targets (o) colored by target. While precise
estimations for important task is already obtained, this can be further improved. (c) Fixation estimates corrected with bias
field; showing the high accuracy obtained with the RealSense low-cost RGBD camera. Sub-cm accuracy is obtained.

Target x (mm) y (mm) displacement (mm)

1 1.6± 16.1 −5.0± 6.9 8.8± 11.7
2 −8.6± 8.4 −6.3± 12.1 12.5± 10.8
3 0.2± 0.5 −2.3± 6.8 5.0± 9.2
4 9.5± 21.2 0.5± 1.0 6.3± 15.2

Table 1: Mean and standard deviation of x and y error
and displacement from ground truth for fixation estimation
examples in Fig. 3.

subjects (1 female and 9 males) aged from 20 to 50 was
collected using the RealSense camera. Each subject was
recorded for about 90 seconds under varying illumination
with slight head movements. Ground truth pulse rate was
collected using a finger-oximeter. We compare our results
with three previous methods: two color (RGB) based meth-
ods (Poh2011 [6], Li 2014 [5]) and one motion-based method
(Balakrishnan2013 [18]). The mean error, standard devia-
tion, root mean square error, and mean error rates are shown
in Table 2. Our proposed framework not only achieves state-
of-the-art performance but is the only one that worked in
low-light and with varying illumination.

4. CONCLUSIONS
We have demonstrated the RealSense 3D camera is capa-
ble of gaze tracking and pulse estimation with good accu-
racy, all integrated in a single low-cost device. On average,
we achieve sub-centimeter mean fixation estimate error for
gaze and ±3 bpm for pulse, with added robustness to light-

Method Me(SDe) (bpm) RMSE (bpm) MeRate (%)

Poh -8.40 (27.98) 15.04 22.59
Balakrishnan -5.91 (17.95) 10.33 15.07
Li -1.45 (7.99) 4.56 6.32
Ours 2.26 (6.54) 3.66 5.34

Table 2: Mean and standard deviation of average pulse rate
error for various methods.

ing conditions. Although our algorithms will benefit from
more sophisticated processing techniques, the reported re-
sults have demonstrated the sensor and technique’s feasi-
bility and provide already sufficient accuracy for multiple
important mobile health applications.
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Figure 4: Cheek region segmentation using infrared and depth image. (a) Facial landmarks tracked on infrared image. (b)
Connected components in depth image. (c) The connected component containing the most landmarks is selected as the face.
(d) Face region in infrared image. (e) Cheek area is selected as the region between the eyes and mouth landmarks.
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Figure 5: Pulse rate measurements for cheek region in infrared image. (a) Infrared intensity. (b) GSS filtering. (c) Detrending.
(d) Normalization. (e) Moving average filtering. (f) Band pass filtering. (g) FFT.
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