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ABSTRACT
Sit-to-stand (STS) motions are one of the most important
activities of daily living as they serve as a precursor to mobil-
ity and walking. However, there exist no standard method
of segmenting STS motions. This is partially due to the va-
riety of different sensors and modalities used to study the
STS motion such as force plate, vision, and accelerometers,
each providing different types of data, and the variability of
the STS motion in video data. In this work, we present a
method using motion capture to detect events in the STS
motion by estimating ground reaction forces, thereby elim-
inating the variability in joint angles from visual data. We
illustrate the accuracy of this method with 10 subjects with
an average difference of 16.5ms in event times obtained via
motion capture vs force plate. This method serves as a proof
of concept for detecting events in the STS motion via video
which are comparable to those obtained via force plate.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Health; I.2.9 [Artificial
Intellignce]: Robotics – Kinematics and dynamics

General Terms
Measurement
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1. INTRODUCTION
Sit-to-stand (STS) motions have been regarded as one of
the most demanding tasks undertaken during daily living.
In fact, difficulty in STS is a risk factor in falls among the
elderly and much research has been done to identify those
at risk of falling [1].

Since the STS motion is used in clinical practice to deter-
mine the ability of an elderly to live independently, it is
useful to have a method to standardize assessment of the

motion. In movement laboratories, most STS analyses have
used kinematic data or ground reaction forces obtained by
motion capture or force plate, respectively. The most fre-
quent methods of segmenting the STS motion are generally
described in 3 ways: (1) flexion and extension phases [6, 19,
9], (2) 4 phases using ankle and trunk motion[18, 21], and
(3) changes in momentum, velocity or torque [10, 7, 15]. A
majority of these studies determine events through vision
using joint angles or velocities and suffer from variability
in joint angles, contributing to the difficulty of creating a
common method of describing events. To study the natu-
ral in-home STS motions unconstrained to a laboratory, the
use of mobile devices and sensors, such as the Kinect, ac-
celerometers, EMGs, and gyroscopes have been used[5, 11,
13, 20, 3]. However, due to the variability in the STS mo-
tion, these studies using mobile devices suffer from similar
shortcomings as the visual methods. In [2], the authors pro-
pose using ground reaction forces (GRFs) to segment the
STS motion. Using GRFs to segment the motion removes
the variability in joint angles, instead looking at a single
measurement to perform event detection.

This presents the following problem: while GRFs obtained
via force plates provide a simple method of segmentation,
force plates are impractical to bring into homes and while
mobile sensors are inexpensive and prolific, they suffer from
variability in STS motion. In this paper, we use a dynami-
cal model of the person and motion capture data to estimate
ground reaction forces, thereby avoiding the issue with joint
variability; estimate STS events using the estimated GRFs;
and compare these with events obtained using GRFs mea-
sured via the force plate.

2. METHODOLOGY
In this section, we describe how we detect events using a
combination of motion capture and dynamics. First, we
outline the event detection presented in [2] which we consider
the ground truth. Second, we describe the model we use.
Third, we describe the event detection algorithm.

2.1 Force plate segmentation
The event detection method described in [2] segments the
STS motion in the saggital plane into 6 events: Initiation,
Counter, Seat-off, Vertical Peak, Rebound, and Standing.
The STS motion begins with the initiation phase, which is
defined at the point the subject begins to lean forward. The
Initiation phase is followed by the Counter, which is when
the subject’s feet slightly lift off the ground. The Counter
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Figure 1: Force plate STS segmentation
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Figure 2: Three link model for the lower body

is followed by Seat-off which is when the subject’s buttocks
leaves the seat. The Vertical Peak is when the subject ex-
erts the maximum downward force, which is followed by the
Rebound, when the subject is fully extended with upward
velocity, and ends with Standing. In [2], the authors de-
termine seat-off using a pressure sensor on the chair and
determine standing visually. As we do not have the same
setup as the in [2], to determine seat-off, we use the time at
which the derivative of the GRF changes from positive to
negative. We choose the events by hand to determine the
ground truth for the STS events.

2.2 Dynamical model
We approach this problem by estimating the GRFs of the
STS behavior using a dynamical model of a human’s lower
body and using the estimated GRF for event detection. The
lower body is modeled using a three segment model in the
saggital plane, shown in Figure 2 to model the human’s
shank, thigh and trunk [4, 13]. Limb lengths are given by the
motion capture, limb masses are calculated for each individ-
ual using tabulated ratios found in [14] and placed along the
limb at a length specified in [16]. Using motion capture, we

record the angles θ = [θ0; θ1; θ2], velocities θ̇ = [θ̇0, θ̇1, θ̇2],

and accelerations θ̈ = [θ̈0, θ̈1, θ̈2], corresponding to the angle
between the vertical and shank, the shank and thigh, thigh
and hip respectively, with positive angles indicating counter-
clockwise rotation. A mathematical description of the dy-
namics is obtained through Lagrangian dynamics given by
[12, Chapter 4].

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= τ (1)

where L = T − V is the Lagrange function, T is the total
kinetic energy of the system T (θ, θ̇) =

∑
i Ti(θ, θ̇), V is the

total potential energy of the system V (θ, θ̇) =
∑

i Vi(θ, θ̇), τ
is a 3×1 vector of generalized torques applied at each joint.
Solving the Lagrange equations, we obtain the equation:

M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ) = τ (2)

where M is the mass matrix, C takes into account the cori-
olis and centrifugal forces, and N is the potential matrix.
Using inverse dynamics, we can obtain the joint torques.
We can also recover the ground reaction forces by follow-
ing the forces in the model through the method described
in [17]. In practice, we utilize the Symoro toolbox to ob-
tain the inverse dynamics and GRFs [8]. An example of the
estimated vertical GRFs is show in Figure 5.

2.3 Event detection
Using this model, we determine STS events using only the
estimated GRF. Events are computed using changes in the
first derivative of the estimated GRF. We start from the
end of the motion and work backwards. First, we detect the
standing phase as the point where the standard deviation of
the GRFs for the following 1s is below a threshold. Second,
the rebound is the first preceding significant local minima.
Third, the vertical peak is the preceding local maxima. The
counter is the first preceding local minima. Finally, initia-
tion phase is the first preceding local maxima.

3. EXPERIMENTS
In this section, we describe our experimental setup, experi-
ment and evaluation method.

3.1 Experimental setup
The experimental setup is shown in Figure 3 and consists
of an AMTI BP900900 force plate and PhaseSpace Impulse
X2 motion capture with 8 infrared cameras. Motion cap-
ture data was collected at 480Hz and the subject’s skeleton
was extracted using PhaseSpace’s Recap2 software. Ground
reaction forces (GRFs) were collected at 2400Hz with the
force plate placed under the subject’s foot. Both the mo-
tion capture and force plate data were smoothed using a
4th-order Butterworth filter with a cut-off frequency of 4Hz.
The chair height was adjusted such that the subject’s thighs
were parallel to the ground.

3.2 Testing procedure
Subjects wore a customized motion capture suit with Phas-
eSpace 43 markers, placed on the suit according to the Re-
cap2 software. Subjects were asked to sit in a standardized
posture with their trunk starting off vertical, thighs hori-
zontal to the ground, hands on knees (constraining variabil-
ity of the arms), and shank vertical to the ground1. The
subject started sitting on the chair with feet placed on the
force plate and stood up at the command of the experiment
proctor. The subject was asked to rise from the seat upon
the proctor’s command and allowed to rise (A) at a natural
speed and (B) at a maximum speed. Each STS motion was
performed 3 times.

1According to [2], constraining the arms to the body results
in similar forces to when the arm is unconstrained.



Figure 3: Experimental setup

3.3 Evaluation
In this subsection, we describe how the proposed method
compares to the ground truth described in Section 2.1. These
events were not compared with those events obtained via vi-
sion since those events are not compatible with the events
detected via force plate.

We ran experiments on 10 individuals with ages ranging
from 18-70, weights ranging from 50-80kg, 7 males and 3
females2. All individuals did not have any disabilities or
known history of physical disability. To evaluate the pro-
posed event detection algorithm, we compute the mean and
standard deviation of the difference between the event times
obtained via the different methods as well as the median,
1st and 3rd quartile of the time difference. The results are
shown in Table 1 and Figure 4. Note that a positive (neg-
ative) time difference indicates that the proposed algorithm
detected the event after (before) the actual event.

Figure 5 shows three instances of the STS motion with both
the force plate forces and motion capture events plotted us-
ing the event detection algorithm. While the GRFs com-
puted via dynamics do not have the same magnitude as the
force plate, they retain the general shape, allowing it for
use in event detection. One possible reason for the GRF
discrepancy is that the model does not account for the fact
that when sitting, most of the subject’s weight is on the
chair. In addition, the proposed algorithm tends to detect
the initiation event before the true initiation event. This also
may be due to the rigid body model where when sitting, a
small motion in the upper body will result in a change in
GRF even when the majority of the person’s weight is on
the chair.

3.4 Limitations
This method currently has only been tested on healthy sub-
jects and has yet to be tested on the general elderly or dis-

2This experiment protocol was approved by the UC Berkeley
Institutional Review Board: CPHS #2014-07-6506 and all
participants gave signed informed consent

Initiation Counter Seat-off
-104.8ms (296.2) 49.9ms (198.1) 53.2ms (105.4)

Vertical peak Rebound Standing
9.2ms (124.1) 126.5ms (124.9) 6.9ms (221.3)

Table 1: The mean ( stdev ) of differences in event times
(milliseconds) from ground truth. Total mean: 16.5ms. To-
tal stdev: 206.4ms

Figure 4: Box plot of time differences for each event. The
line represents the median, box represents the 1-3rd quartile,
and whiskers represents the extremum points not considered
outliers. The red +s represent outliers.

abled population. This method can only detect changes in
forces from motion detected visually and will miss events
exhibiting no visual motion. In Figure 5a, the counter was
missed by the algorithm. Finally, the analysis presented
looks solely at the sagittal plane, ignoring the frontal plane,
which may also have clinical significance.

4. CONCLUSION
We present a method for event detection for the STS mo-
tion using vision data and a dynamical model of the sub-
ject. This method converts joint angle data obtained via
vision to ground reaction forces, thereby bypassing the need
to perform event detection on the angles, which is subject
to much variability. The events detected by the proposed
method have an average of 16.5ms (206.ms stdev) difference
from events obtained via the force plate, indicating that it
is possible to events using estimated GRF via vision. This
method can allow the practitioners to monitor the progress
of a patient’s STS motion in a home, which may be a proxy
to one’s likelihood to fall, without the need of a force plate,
paving the way for remote assistance for the elderly.

Future work includes incorporating body worn accelerome-
ters [22], porting the method to the Microsoft Kinect, using
improved estimates of the human’s dynamical properties,
and a better model. Porting this method to the Kinect will
allow use of this algorithm in independent home and tele-
medicine settings, allowing the attending physician to mon-
itor the patient remotely. Finally, for this to have clinical
applications, we also plan to determine which or how these
event times correspond to the likelihood of falling during
STS.
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(c) Fast STS

Figure 5: Ground reaction forces for STS at natural speed vs time for 3 users. The red line (blue Xs) denote the forces
(events) from the force plate. The green line (black squares) denote the forces (events) computed via the dynamical model.
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