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ABSTRACT

The current machine learning algorithms in fall detection,
especially those that use a sliding window, have a high com-
putational cost because they need to compute the features
from almost all samples. This computation causes energy
drain and means that the associated wearable devices re-
quire frequent recharging, making them less usable. This
study proposes a cascade approach that reduces the compu-
tational cost of the fall detection classifier. To examine this
approach, accelerometer data from 48 subjects performing a
combination of falls and ordinary behaviour is used to train
3 types of classifier (J48 Decision Tree, Logistic Regression,
and Multilayer Perceptron). The results show that the cas-
cade approach significantly reduces the computational cost
both for learning the classifier and executing it once learnt.
Furthermore, the Multilayer Perceptron achieves the high-
est performance with precision of 93.5%, recall of 94.2%, and
f-measure of 93.5%.
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1. INTRODUCTION

Falls are one of the major leading causes of injury-related
death and they are the main cause of disability and death
for people aged over 65 in the UK [2]. Complications such as
hypothermia or pneumonia can become a long term negative
effect of falls [8]. Although fall detection cannot prevent
falls, it may alleviate or reduce complications by going some
way to ensure that fall victims receive help quickly.
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Most of the current fall detection techniques use threshold
based algorithms because of the efficiency of this technique.
However, this produces a high number of false alarms be-
cause some activities (such as sitting down quickly, walking
down the stairs, or lying on the bed) produce an acceleration
as high as fall events [20].

Machine learning based algorithms have become popular in
recent time because they are able to construct a classifier
that can detect falls effectively. Research has shown that
machine learning approaches are able to distinguish fall and
non-fall activities with a high accuracy [7, 6, 18]. However,
the disadvantage of machine learning based algorithms is
that they need to extract the features from a sliding window
that can cause a high computational cost issue. This issue
makes them difficult to implement in wearable sensors that
have limited resources.

To overcome the computational cost issue, we propose a
cascade-classifier approach that has lower computational cost
and better accuracy than a sliding window based machine
learning algorithm. We tested our approach on a large
dataset that contains various types of Activities of Daily
Living (ADLs) and simulated falls from 48 healthy subjects
between 18-51 years old [17]. J48 Decision Tree, Logistic
Regression and Multilayer Perceptron were chosen to test
our approach.

The rest of the paper is organised as follows. Section II
presents related work in fall detection. The dataset that
used in this research is described in Section III. Our ap-
proach is explained in Section IV. Section V discusses the
results and Section VI gives conclusions as well as prospec-
tive future work.

2. RELATED WORK

Igual et al. [11] identifies two categories of fall detectors:
context-aware systems and wearable devices. Context-aware
systems use cameras, infrared, or floor sensors while the
wearable devices are worn on the subject (such as a pen-
dant, watch or belt). According to Gjoreski et al. [9], the
context-aware systems face several challenges such as the
sensors placement, flexibility, user privacy, and the price of
the sensors. Therefore, the wearable devices may be a better
alternative as they are inexpensive and small. Accelerometer
and gyroscope sensors are the most common sensors in wear-
able fall detectors. Within such systems, there are generally
two types of algorithm used: threshold-based and machine
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learning-based [11]. Threshold-based algorithms use a pre-
defined value as a threshold to detect a fall [4, 14, 21]. Ma-
chine learning-based approaches use a supervised machine
learning tool, such as a Support Vector Machine (SVM),
Decision Tree, or Artificial Neural Network, to learn a clas-
sifter that can recognise a fall, based on either the raw sensor
measurement or some feature that has been computed from
the raw measurement [6, 7, 15, 18].

Although the threshold-based algorithms have a low com-
putational cost, implementing them in real-world cases is a
difficult task because the thresholds are usually configured
based on simulated fall signals [3]. This makes them inap-
propriate for real-world falls. Therefore, machine learning
based algorithms are a better alternative as they can be
trained using simulated fall signals to get a general pattern
of falls. However, these approaches incur a high computa-
tional cost because of feature calculation.

Kau and Chen [13] proposed a cascade-classifier approach
with Support Vector Machine (SVM) classifier as a fall de-
tector on the smartphone. Their study shows that their
approach increases the efficiency of the machine learning al-
gorithm for fall detection by reducing the number of fea-
ture calculations. Their approach used an accelerometer
and a gyroscope that are embedded in a smartphone plat-
form. Based on Abbate et al.[l], the problem with using a
smartphone as a fall detector is users needs to carry their
smartphone in a fixed position. In most cases, they prefer to
have a small and non-invasive sensor so they can put their
smartphone wherever they want. Therefore, this study fo-
cused on developing an approach that can learn patterns of
falls from small and non-invasive wearable sensors.

3. DATASET

A large dataset from Ojetola et al. [17] was used in this
study. The data were gathered from 48 (9 females and 39
males) healthy subjects where each of them was required to
simulate 14 falls (forward-fall, backward-fall, lateral fall) and
several ADLs for 23 minutes on average. A more detailed
information regarding the protocol is described on Ojetola
et al. [17].

Table 1 shows the profile of the subjects. The data were
gathered from sensors that were strapped to the chest, wrist,
and thigh of each subject. Some subjects also have data that
were gathered from a sensor that was strapped to waist. In
this study, we used only the chest sensor data because the
chest is the best place to place a sensor for posture recogni-
tion [9].

Shimmer sensors with a sampling rate of 100 Hz were used
as data collectors. The sensor consists of 3D accelerometer,
3D gyroscope, a Bluetooth device, and MSP430F1611 micro-
controller device. The data were transferred to a Personal
Computer (PC) using a Bluetooth device and they were an-
notated with a LabView program. Figure 1 shows the falls
and some ADLs of this dataset.

4. THE CASCADE-CLASSIFIER APPROACH

4.1 The Micro-annotation Approach
In the window-based approach, the output of the classifier
is often misalign with the data segment that is annotated

Table 1: Subject body profile summary

Profile Minimum Maximum Average Standard Deviation
Age (years) 18 51 23.5 5.4
Height (cm) 157 192 172.5 7.7
Weight (kg) 45 108 69.4 12.7

as a fall. It produces an ambiguity especially in the train-
ing and testing phases of the machine learning algorithm.
Ojetola [16] proposed a micro-annotation approach to solve
this problem. This approach re-annotates only one sample
as a fall in each fall event segment. In our experiment, we
adopted this approach to train and test our cascade-classifier
approach. The illustrations of both the ambiguity of win-
dow based approach and the micro-annotation approach are
shown in Figure 2.

4.2 Features

In calculating the features, three stages were used: pre-
impact, impact and post-impact. These three stages are
useful to capture the fall history of the subject [16]. The
lengths of pre-impact, impact, and post-impact are 1 sec-
ond, 6 seconds, and 9 seconds. The length of the windows
were chosen based on [16]. The following subsections ex-
plain the features that were used in our approach for their
respective stages.

4.2.1 Active State (Act_state)

This feature was extracted based on the vector magnitude of
three-axis acceleration outputs. Based on Abbate et al.[1],
people in an inactive state (e.g sitting or standing) produce
an acceleration vector magnitude approximately 1.0 g while
they produce above 1.5 g in active state. In this study we
used 1.6 g as threshold and the active state was calculated
using a non-overlapped 2 seconds sliding window [16].

4.2.2  Minimum Acceleration (Min)

The minimum vector magnitude of acceleration over 1 sec-
ond window was calculated. Based on Kangas et al. [1],
the minimum value of vector magnitude was nearly 0.0g in
a pre-impact fall event.

4.2.3 Maximum Acceleration (Mazx)

The maximum vector magnitude of acceleration over 1 sec-
ond overlapping window was calculated. It overlapped by
50% from the Minimum Value feature window. This feature
was used to detect the highest peak of the vector magnitude
of the acceleration when the fall impact phase happened [1].

4.24 Mean

Based on Ojetola [16], the mean acceleration is higher in pre-
impact and impact stages than the post impact. Therefore
this feature is calculated for those three stages.

4.2.5 Velocity

We used this feature because the velocity value from fall
events tends to be higher than static activities [4]. This
feature was calculated for the three stages. The equation to
calculate this feature is:

V= /Vm dt, (1)
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Figure 1: Activities of Daily Living (ADLs) and simulated fall illustration[16]

where V,,, is the acceleration vector magnitude.

4.2.6 Energy Expenditure (Energy)
The energy expenditure was calculated for the three stages
[16]. The energy expenditure was calculated using:

E:/aidt+/a§dt+/a§dt, (2)

where a., ay, and a. are the outputs of the accelerometer
on x-axis, y-axis, and z-axis respectively.

4.2.7 Variance
The variance of accelerometer vector magnitude was calcu-
lated for the three stages [5, 16].

4.2.8 Root Mean Square (RMS)

The RMS of the acceleration signal was also calculated for
the pre-impact, impact, and post-impact stages. RMS has
previously been used in research for fall detection [4, 9].

4.2.9 Exponential Moving Average (EMA)

The EMA value of vector magnitude was calculated from
the three stages as feature values [5]. EMA is calculated as:

st =aVm + (1 —a)si—1, (3)
where s; is the EMA value at time ¢ , is the smoothing

factor, and V,, is the vector magnitude of acceleration.

4.2.10 Signal Magnitude Area (SMA)
The SMA is useful to distinguish human activities [12]. It
was calculated using:

t t t
1
=1 /|az|dt+/|ay|dt+/|az|dt R
0 0 0

Table 2: Fall stages and their extracted features

Pre-impact Impact Post-impact
Mean Mean Mean
Velocity Velocity Velocity
Energy Expenditure Energy Expenditure Energy Expenditure
Variance Variance Variance

Root Mean Square Root Mean Square Root Mean Square
Exponential Moving Average Exponential Moving Average Exponential Moving Average
Signal Magnitude Area Signal Magnitude Area Signal Magnitude Area

Minimum Acceleration Maximum Acceleration

where 7 is the SMA value and a is the accelerometer value
from z, y, and z axis.

The stages and their respective features are shown in Table
2.

4.3 The Cascade-Classifier Approach

The key aspect of the cascade-classifier approach is the use
of a threshold to trigger the feature calculation process. In
this way, the cascade-classifier approach prevents the system
performing the features calculation for all samples. Our pro-
posed cascade-classifier approach is shown in Algorithm 1.

Algorithm 1 Cascade-classifier approach

while stopping_condition is False do
Act_samples < acceleration vector magnitude (Vi)
Act_state < Check_act(Act_Samples)
if Act_state is True then
pre_impact < 1 second window samples
imp_post <— 11 seconds window samples
instance < Feature_Calc(pre_impact,imp_post)
end if
return instance
end while

—_

As an initial phase, this approach captures and checks the
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Figure 2: (a) Ambiguity in sliding window based approach;
(b) Micro-annotation approach

Active State (Check_act()) of the samples using a non-
overlapped sliding window every 2 seconds. This means, if
a sample that has a vector magnitude of acceleration higher
than 1.6 g is detected, the features calculation process is
triggered. We call this sample the active sample. Other-
wise, the feature calculation process is not triggered.

The second phase contains features calculations. This pro-
cess is started by collecting samples with a 1 second window
before and 11 seconds window after the active sample. The
1 second window before the active sample captures the pre-
impact stage while the 11 seconds window after the active
sample captures the impact and post-impact stages. The
next step calculates the features based on the three stages
(pre-impact, impact, and post-impact). The features and
their windows are illustrated in Figure 3.

5. EXPERIMENTAL EVALUATION
5.1 Experimental Setup

The data were pre-processed offline using Python program-
ming language and WEKA [10] was chosen for training and
testing the instances. J48 Decision Tree, Logistic Regression
and Multilayer Perceptron were used as the classifier. For
the Multilayer Perceptron classifier, we used 3 hidden layers.
Five nodes were used in the first hidden layer, four nodes in
the second hidden layer, and three nodes were used in the
third hidden layer. As comparison, we also implemented a
sliding window based approach that uses J48 Decision Tree
as a classifier [16]. We used a machine with the specifica-
tion: Intel core i7 @ 3.10 GHz, 8 GB of DDR3 Memory, and
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Figure 3: Features window illustration

Table 3: Precision, Recall, and f-measure from sliding win-
dow based J48 Decision Tree (J48 DT), cascade-classifier
based J48 Decision Tree (CC J48 DT ), cascade-classifier
based Logistic Regression (CC LR), and cascade-classifier
based Multilayer Perceptron (CC MLP)

Precision (%) Recall (%) f-measure (%)

Classifier Mean STD Mean STD Mean STD
J48 DT 86.9 9.5 89.0 13.6 874 10.1
CC J48 DT 87.5 10.8 86.0 17.7  85.7 13.6
CC LR 90.8 6.7 90.8 13.4  90.0 8.5
CC MLP 93.5 7.0 94.2 8.92 93,5 6.3

Linux Mint 17 Qiana to run the experiment.

Leave-one-subject-out cross-validation was used in this ex-
periment. Precision, recall, and f-measure were used to mea-
sure the performance of our cascade-classifier. The exact
Wilcoxon sign rank test was performed to show the signifi-
cance of our improvement.

5.2 Results and Discussion

The result of our experiment shows that our cascade-classifier
can achieve up to 93.5% of f-measure when it used Multi-
layer Perceptron as the classifier. Our approach can sur-
pass the sliding window based approach’s accuracy signifi-
cantly if Logistic Regression (p-value = 0.04) or Multilayer
Perceptron (p-value = 0.00001) are used as the classifier.
Although our cascade-classifier approach with J48 Decision
Tree as a classifier achieves lower performance than the slid-
ing window based algorithm, the difference is not significant
(p-value = 0.3). Overall, the Multilayer Perceptron is the
best classifier for our cascade-classifier approach because it
achieves the highest f-measure. Table 3 shows the average
mean and standard deviation of the precision, recall, and
f-measure of the sliding window based algorithm and our
cascade-classifier approach. The distribution of the perfor-
mance values from all classifiers is shown in Figure 4.

In our experiment, the running time of the feature calcu-
lation processes were computed to show that our cascade-
classifier approach is able to reduce the computational cost

1400



100 =

80 — : [ o
| l 3
60 - ° 2
e
40 - 3
20 -
100 - p————
2 f ] t . y —— $
o 80- | I [ °
S o o 2
= 60 = ° ° ° [ I
o [} [ ] =
3] 40 = ° °
& 20- .
100 — # ——— ———— $
L ] —_
- [
50 | | l ° 3
60 — 1 - 2
° ® =
40 - @
°
20 - I I I I
J48 DT J48 DT CC LR MLP
Classifiers
Figure 4: The classifiers performance
Table 4: Running time technique prevents the features calculation being executed
for some samples. As classifiers, this study used J48 Deci-
A segmept All segmer.lts sion Tree, Logistic Regression, and Multilayer Perceptron.
Approach from a subject from a subject A large dataset of Falls and ADLs with total of 48 subjects
__ i Average STD  Average STD and 672 simulated falls was used to assess our approach. We
Sliding window 0.025s  0.0009 2677.1s  712.7 also implemented a sliding window based machine learning
Cascade-classifier  0.006 s  0.0006 0.4s 0.05

of the machine learning approach. As all the subjects in
the dataset follow the same protocol, a subset of them that
consists of 4 random subjects was used. The experiment
measured the time that was needed to calculate features for
each segment and all segments from a subject.

Table 4 shows that our cascade-classifier approach requires
significantly less time than the sliding window based ap-
proach for feature extractions of each segment (p-value =
3.327e-09) and all segments (p-value = 3.327e-09). The de-
lay in detecting falls can be reduced once the running time
of the feature calculation from a segment is reduced. By
detecting the falls early, the negative effects of them can be
reduced. Furthermore, our approach also requires less time
to do feature calculation from all segments corresponding to
one subject than the sliding window based approach. This
means that if our algorithm is implemented on the node,
it prevents the sensor node battery lifetime from draining
rapidly.

6. CONCLUSION AND FUTURE WORK

This study proposed a cascade-classifier approach to over-
come the high computational cost issue in machine learning
based algorithms for fall detection. Our cascade-classifier
approach uses ACTIVE STATE feature in the initial phase
to trigger the features calculation in the next phase. This

approach for a comparison.

From our experiment, it can be concluded that the cascade-
classifier approach can significantly reduce the computational
time of the current sliding window based machine learning
algorithm. It can lead to reduction in computational cost
and have a further impact on energy consumption of the
node. In terms of accuracy, our approach is able to achieve
better performance than the sliding window based machine
learning algorithm if it uses Logistic Regression or Multi-
layer Perceptron as the classifier. Among the classifiers, the
Multilayer Perceptron achieves the best performance with
93.5% of precision, 94.5% of recall, and 93.5 of f-measure.

Some possible avenues for the next step of our research are:
(i) investigation of postural sway [19] to trigger the fea-
ture calculation process; (ii) investigation of low-cost fea-
tures that can increase both performance and speed of the
classifier.
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