2nd International ICST Conference on Performance Evaluation Methodologies and Tools

Research Article

Cross-System Resource Allocation Based on Random Matrix Theory

Download214 downloads
  • @INPROCEEDINGS{10.4108/valuetools.2007.2018,
        author={Samson Lasaulce and Alberto Su\^{a}rez and Raul de  Lacerda and Merouane Debbah},
        title={Cross-System Resource Allocation Based on Random Matrix Theory},
        proceedings={2nd International ICST Conference on Performance Evaluation Methodologies and Tools},
        proceedings_a={VALUETOOLS},
        year={2010},
        month={5},
        keywords={Cross system optimization multiple access channel power allocation iterative water-filling heterogeneous networks.},
        doi={10.4108/valuetools.2007.2018}
    }
    
  • Samson Lasaulce
    Alberto Suárez
    Raul de Lacerda
    Merouane Debbah
    Year: 2010
    Cross-System Resource Allocation Based on Random Matrix Theory
    VALUETOOLS
    ICST
    DOI: 10.4108/valuetools.2007.2018
Samson Lasaulce1,*, Alberto Suárez2,*, Raul de Lacerda2,*, Merouane Debbah3,*
  • 1: Lab. des Signaux et Systemes CNRS - Supelec - Paris 11 91190, Gif-sur-Yvette, France
  • 2: Dpt. Communications Mobiles Institut Eurecom 06904, Sophia Antipolis, France
  • 3: Supelec 91190, Gif-sur-Yvette, France
*Contact email: lasaulce@lss.supelec.fr, suarezr@eurecom.fr, raul.delacerda@_eurecom.fr, merouane.debbah@supelec.fr

Abstract

This paper investigates the situation where a (large) group of terminals can be connected simultaneously to several base stations using distinct wireless technologies. We introduce and solve the problem of optimally sharing the mobile transmit power between different systems. Key results from asymptotic random matrix theory (when the number of users and the dimensions of different systems increase) allow us to derive the best power allocation scheme in the sense of the sum-capacity of the overall system, for which the uplink is equivalent to a parallel fading multiple access channel. Moreover, we provide an iterative algorithm to solve the power allocation algorithm. Simulations for a finite number of users validate the asymptotic claims.