Research Article
Citation Data Clustering for Author Name Disambiguation
@INPROCEEDINGS{10.4108/infoscale.2007.203, author={Tomonari Masada and Atsuhiro Takasu and Jun Adachi}, title={Citation Data Clustering for Author Name Disambiguation}, proceedings={2nd International ICST Conference on Scalable Information Systems}, proceedings_a={INFOSCALE}, year={2010}, month={5}, keywords={Name Disambiguation Unsupervised Learning}, doi={10.4108/infoscale.2007.203} }
- Tomonari Masada
Atsuhiro Takasu
Jun Adachi
Year: 2010
Citation Data Clustering for Author Name Disambiguation
INFOSCALE
ICST
DOI: 10.4108/infoscale.2007.203
Abstract
In this paper, we propose a new method of citation data clustering for author name disambiguation. Most citation data appearing in the reference section of scientific papers include the coauthor first names with their initials. Hence, we often search citation data by using such an abbreviated name, e.g. “S. Lee” or “J. Chen”, and consequently obtain many irrelevant data in the search result, because such an abbreviated name refers to many different persons. In this paper, we propose a method of citation data clustering to construct clusters each of which includes only citation data corresponding to a unique author. Our clustering method is based on a probabilistic model which is an extension of the naive Bayes mixture model. Since our model has two hidden variables, we call it two-variable mixture model. In the evaluation experiment, we used the well-known DBLP data set. The results show that the two-variable mixture model can achieve a better balance between precision and recall than the naive Bayes mixture model.