About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
3rd International ICST Conference on Performance Evaluation Methodologies and Tools

Research Article

Lorenzian analysis of infinite poissonian populations and the phenomena of Paretian ubiquity

Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.4108/icst.valuetools.2008.48,
        author={Iddo  Eliazar 	},
        title={Lorenzian analysis of infinite poissonian populations and the phenomena of Paretian ubiquity},
        proceedings={3rd International ICST Conference on Performance Evaluation Methodologies and Tools},
        publisher={ICST},
        proceedings_a={VALUETOOLS},
        year={2010},
        month={5},
        keywords={},
        doi={10.4108/icst.valuetools.2008.48}
    }
    
  • Iddo Eliazar
    Year: 2010
    Lorenzian analysis of infinite poissonian populations and the phenomena of Paretian ubiquity
    VALUETOOLS
    ICST
    DOI: 10.4108/icst.valuetools.2008.48
Iddo Eliazar 1
  • 1: Holon Institute of Technology, Israel

Abstract

The Lorenz curve is a universally-calibrated statistical tool measuring quantitatively the distribution of wealth within human populations. We consider infinite random populations modeled by inhomogeneous Poisson processes defined on the positive half-line - the randomly scattered process-points representing the wealth of the population-members (or any other positive-valued measure of interest such as size, mass, energy, etc.). For these populations the notion of "macroscopic Lorenz curve" is defined and analyzed, and the notion of "Lorenzian fractality" is defined and characterized. We show that the only non-degenerate macroscopically observable Lorenz curves are power-laws manifesting Paretian statistics - thus providing a universal "Lorenzian explanation" to the ubiquitous appearance of Paretian probability laws in nature.

Published
2010-05-16
Publisher
ICST
http://dx.doi.org/10.4108/icst.valuetools.2008.48
Copyright © 2008–2025 ICST
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL