1st Intenational ICST Conference on Immersive Telecommunications & Workshops

Research Article

Agent-based Collaborative Affective E-learning System

Download211 downloads
  • @INPROCEEDINGS{10.4108/ICST.IMMERSCOM2007.2090,
        author={M. Ben Ammar and Adel M.Alim and Mahmoud Neji and Guy Gouard\'{e}res},
        title={Agent-based Collaborative Affective E-learning System},
        proceedings={1st Intenational ICST Conference on Immersive Telecommunications \& Workshops},
        proceedings_a={IMMERSCOM},
        year={2010},
        month={5},
        keywords={Affective communication virtual environments virtual entities affective states e-learning systems},
        doi={10.4108/ICST.IMMERSCOM2007.2090}
    }
    
  • M. Ben Ammar
    Adel M.Alim
    Mahmoud Neji
    Guy Gouardères
    Year: 2010
    Agent-based Collaborative Affective E-learning System
    IMMERSCOM
    ICST
    DOI: 10.4108/ICST.IMMERSCOM2007.2090
M. Ben Ammar1,*, Adel M.Alim1,*, Mahmoud Neji2,*, Guy Gouardères3,*
  • 1: REsearch Group on Intelligent Machines (REGIM), University of Sfax, ENIS P.O.Box. W-3038 – Sfax – Tunisia
  • 2: Faculté des Sciences Economiques et de Gestion, University of Sfax, –Tunisia
  • 3: LIUPPA, IUT de Bayonne – Université de Pau et des Pays de l'Adour 64115 Bayonne, France
*Contact email: ben_ammar@acm.org, adel.alimi@ieee.org, Mahmoud.Neji@fsegs.rnu.tn, Guy.gouarderes@iutbayonne.univ-pau.fr

Abstract

In order to promote a more dynamic and flexible communication between the learner and the system, we integrate five kinds of adaptive agents in emotional framework. We focus on human facial characteristics to develop general-purpose agents that can recognize human emotion and create emotional framework with the implications of peer-to-peer technology. Emotions play an important role in cognitive processes and specially in learning tasks. Online learning is no exception. Detecting a learner’s emotional reaction for a given situation is an essential element for every e-learning system. In this paper a system for identifying facial expressions by using facial features is presented, it can recognizes 6 basic emotional expressions (happiness, sadness, surprise, fear, anger, and disgust).