6th International ICST Conference on Body Area Networks

Research Article

Posture Detection with Body Area Networks

Download215 downloads
  • @INPROCEEDINGS{10.4108/icst.bodynets.2011.247212,
        author={Ioannis Paschalidis and Wuyang Dai and Dong Guo and Yingwei Lin and Keyong Li and Binbin Li},
        title={Posture Detection with Body Area Networks},
        proceedings={6th International ICST Conference on Body Area Networks},
        publisher={ICST},
        proceedings_a={BODYNETS},
        year={2012},
        month={6},
        keywords={posture detection generalized likelihood test multiple observation classification},
        doi={10.4108/icst.bodynets.2011.247212}
    }
    
  • Ioannis Paschalidis
    Wuyang Dai
    Dong Guo
    Yingwei Lin
    Keyong Li
    Binbin Li
    Year: 2012
    Posture Detection with Body Area Networks
    BODYNETS
    ICST
    DOI: 10.4108/icst.bodynets.2011.247212
Ioannis Paschalidis1,*, Wuyang Dai1, Dong Guo1, Yingwei Lin1, Keyong Li1, Binbin Li1
  • 1: Boston University
*Contact email: yannisp@bu.edu

Abstract

Body posture detection is extremely useful in health monitoring and rehabilitation. We develop a method to detect body posture that uses signal strength measurements from sensor nodes forming a Wireless Body Area Network (WBAN). We assume that postures (formations) take values in a discrete set and develop a composite hypothesis testing approach which uses a Generalized Likelihood Test (GLT) decision rule. The GLT rule distinguishes between a set of probability density function (pdf) families constructed using a custom pdf interpolation technique. The GLT is compared with the simple Likelihood Test (LT). We also adapt one prevalent supervised learning approach, Multiple Support Vector Machine (MSVM), to compare with our probabilistic methods. Due to the highly variant measurements from the WBAN, and these methods' different adaptability to multiple observations, our analysis and experimental results suggest that GLT is more accurate and suitable for posture/formation detection. Even for very similar postures in our experiments, GLT demonstrates high detection accuracy (around 97% with multiple observations).
Besides the body area networks, the formation detection problem has interesting applications in autonomous robot systems.