Research Article
Development of an Energy Planning Model Using Temporal Production Simulation and Enhanced NSGA-III
@ARTICLE{10.4108/ew.5721, author={Xiaojun Li and Yilong Ni and Shuo Yang and Zhuocheng Feng and Qiang Liu and Jian Qiu and Chao Zhang}, title={Development of an Energy Planning Model Using Temporal Production Simulation and Enhanced NSGA-III}, journal={EAI Endorsed Transactions on Energy Web}, volume={11}, number={1}, publisher={EAI}, journal_a={EW}, year={2024}, month={12}, keywords={}, doi={10.4108/ew.5721} }
- Xiaojun Li
Yilong Ni
Shuo Yang
Zhuocheng Feng
Qiang Liu
Jian Qiu
Chao Zhang
Year: 2024
Development of an Energy Planning Model Using Temporal Production Simulation and Enhanced NSGA-III
EW
EAI
DOI: 10.4108/ew.5721
Abstract
This paper presents an innovative model of Energy Planning Model which allows navigating the complexities of modern energy systems. Our model utilizes a combination of Temporal Production Simulation and an Enhanced Non-Dominated Sorting Genetic Algorithm III to address the challenge associated with fluctuating energy demands and renewable sources integration. The model represents a significant advancement in energy planning due to its capacity to simulate energy production and consumption dynamics over time. The unique feature of the model is based on Temporal Production Simulation, meaning that the model is capable of accounting for hourly, daily, and seasonal fluctuations in energy supply and demand. Such temporal sensitivity is crucial for optimization in systems with high percentages of intermittent renewable sources, as existing planning solutions largely ignore such fluctuations. Another component of the model is the Enhanced NSGA-III algorithm that is uniquely tailored for the nature of multi-objective energy planning where one must balance their cost, environmental performance, and reliability. We have developed improvements to NSGAIII to enhance its efficiency when navigating the complex decision space associated with energy planning to reach faster convergence and to explore more optimal solutions. Methodologically, we use a combination of in-depth problem definition approach, advanced simulation, and algorithmic adjustments. We have validated our model against existing models and testing it in various scenarios to illustrate its superior ability to reach optimal energy plans based on efficiency, sustainability, and reliability under various conditions. Overall, through its unique incorporation of the Temporal Production Simulation and an improved optimization algorithm, the Energy Planning Model provides novel insights and practical decision support for policymakers and energy planners developed to reach the optimal sustainable solutions required for the high penetration of renewables.
Copyright © 2024 Li et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.