About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
Proceedings of the First International Conference on Combinatorial and Optimization, ICCAP 2021, December 7-8 2021, Chennai, India

Research Article

Trends in Text to Image Synthesis (T2I) using Generative Adversarial Networks

Download706 downloads
Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.4108/eai.7-12-2021.2315122,
        author={Venkatesan  R and Priyanka  S},
        title={Trends in Text to Image Synthesis (T2I) using Generative Adversarial Networks},
        proceedings={Proceedings of the First International Conference on Combinatorial and Optimization, ICCAP 2021, December 7-8 2021, Chennai, India},
        publisher={EAI},
        proceedings_a={ICCAP},
        year={2021},
        month={12},
        keywords={generative adversarial networks deep attentional multi-layered natural language textual descriptions photo-realistic semantic consistency text-to-image synthesis},
        doi={10.4108/eai.7-12-2021.2315122}
    }
    
  • Venkatesan R
    Priyanka S
    Year: 2021
    Trends in Text to Image Synthesis (T2I) using Generative Adversarial Networks
    ICCAP
    EAI
    DOI: 10.4108/eai.7-12-2021.2315122
Venkatesan R1,*, Priyanka S1
  • 1: PSG College of Technology
*Contact email: rve.cse@psgtech.ac.in

Abstract

The two most evident modalities of humans are language and vision. Any system that aids interaction between human beings and Artificial Intelligence (AI) is rooted upon these two. Text-to-Image synthesis (T2I) powered by Natural Language Processing (NLP) and deep Generative Adversarial Networks (GANs) replicates this phenomenon. The logical relationship between semantics and vision guides T2I, that attempts to translate highly detailed natural language textual descriptions to pixel-level details. The human concept of attention is leveraged and conceptualized by deep attentional multi-layered GANs. Mimicking the human thinking processes of visualizing the scenes in mind while speaking and listening can be extensively used in various AI applications that craves brain-like comprehending potency. The advancement of a multitude of GANs that focused on semantic consistency, high-resolution photo-realistic images and diversity in synthesis has been investigated in this article.

Keywords
generative adversarial networks deep attentional multi-layered natural language textual descriptions photo-realistic semantic consistency text-to-image synthesis
Published
2021-12-22
Publisher
EAI
http://dx.doi.org/10.4108/eai.7-12-2021.2315122
Copyright © 2021–2025 EAI
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL