About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
The First International Workshop on Bioinformatics

Research Article

Clustering of Functional Data by Band Depth

Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.4108/eai.3-12-2015.2262364,
        author={Amy Kwon and Ming Ouyang},
        title={Clustering of Functional Data by Band Depth},
        proceedings={The First International Workshop on Bioinformatics},
        publisher={ACM},
        proceedings_a={BIOINFORMATICS},
        year={2016},
        month={5},
        keywords={functional depth clustering dna microarray},
        doi={10.4108/eai.3-12-2015.2262364}
    }
    
  • Amy Kwon
    Ming Ouyang
    Year: 2016
    Clustering of Functional Data by Band Depth
    BIOINFORMATICS
    ACM
    DOI: 10.4108/eai.3-12-2015.2262364
Amy Kwon1, Ming Ouyang,*
  • 1: Seoul National University
*Contact email: ming@cs.umb.edu

Abstract

The notion of data depth is a generalization of order statistics, ranks, and medians in one-dimensional space to multi-dimensional space. Band depth is a depth measure of functional data. A few articles in the literature emerged in recent years that used band depth to analyze functional data. The present work is the first attempt to develop a non-parametric clustering method based on band depth. Three definitions of band depth are compared, a few combinations of clustering strategies are employed, and band depth clustering is applied to DNA microarray data of yeast cell cycle. The results show that band depth clustering is efficient and robust.

Keywords
functional depth clustering dna microarray
Published
2016-05-24
Publisher
ACM
http://dx.doi.org/10.4108/eai.3-12-2015.2262364
Copyright © 2015–2025 ICST
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL