About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
Proceedings of the 2nd International Conference on ICT for Digital, Smart, and Sustainable Development, ICIDSSD 2020, 27-28 February 2020, Jamia Hamdard, New Delhi, India

Research Article

Long Short Term Memory network for Recognition of Daily Human Activity

Download533 downloads
Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.4108/eai.27-2-2020.2303125,
        author={Gaurav  Arora and Anvaya  Ahlawat and Mandeep  Payal},
        title={Long Short Term Memory network for Recognition of Daily Human Activity},
        proceedings={Proceedings of the 2nd International Conference on ICT for Digital, Smart, and Sustainable Development, ICIDSSD 2020, 27-28 February 2020, Jamia Hamdard, New Delhi, India},
        publisher={EAI},
        proceedings_a={ICIDSSD},
        year={2021},
        month={3},
        keywords={deep learning lstm neural networks machine learning human activity recognition convolution},
        doi={10.4108/eai.27-2-2020.2303125}
    }
    
  • Gaurav Arora
    Anvaya Ahlawat
    Mandeep Payal
    Year: 2021
    Long Short Term Memory network for Recognition of Daily Human Activity
    ICIDSSD
    EAI
    DOI: 10.4108/eai.27-2-2020.2303125
Gaurav Arora1,*, Anvaya Ahlawat1, Mandeep Payal1
  • 1: Maharaja Surajmal Institute of Technology
*Contact email: garora039@gmail.com

Abstract

Previously Human Activity Recognition has been solved by using the engineered features, but the main problem with this approach is that it requires specific domain knowledge. Adopting classical machine learning models has been effective but these methods completely ignore the time signal obtained from the sensors. But due to recent advancements, deep learning techniques like Long Short Term Model and recurrent neural networks have been effectively used to provide good results and classify human activities correctly as compared to machine learning models. So in this paper, we propose a LSTM framework to classify these activities and also compare its performance with classical machine learning models.

Keywords
deep learning lstm neural networks machine learning human activity recognition convolution
Published
2021-03-11
Publisher
EAI
http://dx.doi.org/10.4108/eai.27-2-2020.2303125
Copyright © 2020–2025 EAI
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL