Proceedings of the 2nd International Conference on Quran and Hadith Studies Information Technology and Media in Conjunction with the 1st International Conference on Islam, Science and Technology, ICONQUHAS & ICONIST, Bandung, October 2-4, 2018, Indonesia

Research Article

Identification of Letters Hijaiyah Pronunciation Using Neural Network (Backpropagation) and Pre-Processing of Mel-Frequency Cepstral Coefficient

Download103 downloads
  • @INPROCEEDINGS{10.4108/eai.2-10-2018.2295283,
        author={Wafira  Rahmania and Arini  Arini and Anif Hanifa Setyaningrum and Arie  Purnomosidi and Muhammad Taufik Rusydi},
        title={Identification of Letters Hijaiyah Pronunciation Using Neural Network (Backpropagation) and Pre-Processing of Mel-Frequency Cepstral Coefficient},
        proceedings={Proceedings of the 2nd International Conference on Quran and Hadith Studies Information Technology and Media in Conjunction with the 1st International Conference on Islam, Science and Technology,  ICONQUHAS \& ICONIST, Bandung, October 2-4, 2018, Indonesia},
        publisher={EAI},
        proceedings_a={ICONQUHAS},
        year={2020},
        month={5},
        keywords={signal processing; mel-frequency cepstral coefficient; artificial neural network (backpropagation); simulation;},
        doi={10.4108/eai.2-10-2018.2295283}
    }
    
  • Wafira Rahmania
    Arini Arini
    Anif Hanifa Setyaningrum
    Arie Purnomosidi
    Muhammad Taufik Rusydi
    Year: 2020
    Identification of Letters Hijaiyah Pronunciation Using Neural Network (Backpropagation) and Pre-Processing of Mel-Frequency Cepstral Coefficient
    ICONQUHAS
    EAI
    DOI: 10.4108/eai.2-10-2018.2295283
Wafira Rahmania1,*, Arini Arini1, Anif Hanifa Setyaningrum1, Arie Purnomosidi2, Muhammad Taufik Rusydi2
  • 1: UIN Syarif Hidayatullah, Department of Informatics Engineering, Jakarta, Indonesia
  • 2: University of Surakarta, Faculty of Law, Indonesia
*Contact email: wafirarahmania13@mhs.uinjkt.ac.id

Abstract

To avoid mistakes in pronouncing hijaiyah letters. The writer applies mel-frequency cepstral coefficient to extract and will yield characteristic value of voice signal. Implementation of Artificial Neural Networks (Backpropagation) is used for classification on the identification of 8 letters of hijaiyah using Matlab. 8 selected hijaiyah letters are س ص ذ ز ق ك ء ع take fathah. The feature extraction process produces several different parameter values, including pre-emphasis, windowing, fast fourier transform, discrete cosine transform, coefficient cepstrum and the duration. The backpopagation experiment using the maximum number of epoch and training functions varies as much as 15 times from each scenario capable of producing training regression 0.91019, test 0.93486, validation 0.99772 and MSE 0.2048. The test of hijaiyah pronunciation using trainlm with the number of hidden layer 10, obtained accuracy of 25%.