10th EAI International Conference on Mobile Multimedia Communications

Research Article

Improving the Efficiency of Big Forensic Data Analysis Using NoSQL

Download157 downloads
  • @INPROCEEDINGS{10.4108/eai.13-7-2017.2270344,
        author={Md Baitul Al Sadi and Hayden Wimmer and Lei Chen and Kai Wang},
        title={Improving the Efficiency of Big Forensic Data Analysis Using NoSQL},
        proceedings={10th EAI International Conference on Mobile Multimedia Communications},
        publisher={EAI},
        proceedings_a={MOBIMEDIA},
        year={2017},
        month={12},
        keywords={digital forensic (df) nosql big data big data forensic mongodb document-oriented database autopsy internet of things (iot)},
        doi={10.4108/eai.13-7-2017.2270344}
    }
    
  • Md Baitul Al Sadi
    Hayden Wimmer
    Lei Chen
    Kai Wang
    Year: 2017
    Improving the Efficiency of Big Forensic Data Analysis Using NoSQL
    MOBIMEDIA
    EAI
    DOI: 10.4108/eai.13-7-2017.2270344
Md Baitul Al Sadi1, Hayden Wimmer1, Lei Chen1,*, Kai Wang1
  • 1: Georgia Southern University
*Contact email: lchen@georgiasouthern.edu

Abstract

The rapid growth of Internet of Things (IoT) makes the task for digital forensic more difficult. At the same time, the data analyzing technology is also developing in a feasible pace. Where traditional Structured Query Language (SQL) is not adequate to analyze the data in an unstructured and semi-structured format, Not only Standard Query Language (NoSQL) unfastens the access to analyzing the data of all format. The large volume of data of IoTs turns into Big Data which just do not enhance the probability of attaining of evidence of an incident but make the investigation process more complex. This paper aims to analyze Big Data for Digital Forensic (DF) investigation using NoSQL. MongoDB has been used to analyze Big Forensic Data in the form of document-oriented database. The proposed solution is capable of analyzing Big Forensic Data in the form of NoSQL more specifically document oriented data in a cost-effective, efficient way as all the tools is being used are open source.