Research Article
Real Time Video Stitching by Exploring Temporal and Spatial Features
@INPROCEEDINGS{10.4108/eai.13-7-2017.2270086, author={Shaoen Wu and kelly Blair and Junhong Xu and Shangyue Zhu and Hanqing Guo and Kai Wang and Lei Chen}, title={Real Time Video Stitching by Exploring Temporal and Spatial Features}, proceedings={10th EAI International Conference on Mobile Multimedia Communications}, publisher={EAI}, proceedings_a={MOBIMEDIA}, year={2017}, month={12}, keywords={interest point and salient region detections matching appearance and texture representations}, doi={10.4108/eai.13-7-2017.2270086} }
- Shaoen Wu
kelly Blair
Junhong Xu
Shangyue Zhu
Hanqing Guo
Kai Wang
Lei Chen
Year: 2017
Real Time Video Stitching by Exploring Temporal and Spatial Features
MOBIMEDIA
EAI
DOI: 10.4108/eai.13-7-2017.2270086
Abstract
Although image stitching has been investigated for years, realtime video stitching still lacks of e cient methods to meet the required frame rate for satisfactory human vision experience. This work pro- poses e cient video stitching solutions by exploiting both temporal and spatial features among video frames. As a result, the stitching speed is signi cantly improved with two techniques by exploiting: (1) the dimmension of distance (spatial) by focusing only on the region of frame overlap and (2) the dimmension of time (tempo- ral) by reusing homography information across multiple frames. Based on these two techniques, this paper presents three solutions to determine submiages for rapid stitching the video frames from side-by-side cameras. This work implements these solutions into a video stitcher. The evaluation over video streams shows that the proposed solutions can stitch the video at 6.5 frames per second (fps) in contrast to 1.5 fps in conventional imaging stitching approaches, which is over 400% improvement on stitching speed performance, but at the cost of a marginal drop in accuracy.