About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
airo 23(1):

Research Article

Multi-class Classification of Imbalanced Intelligent Data using Deep Neural Network

Download435 downloads
Cite
BibTeX Plain Text
  • @ARTICLE{10.4108/airo.3486,
        author={Akram Sadat  Mirshahzadeh},
        title={Multi-class Classification of Imbalanced Intelligent Data using Deep Neural Network},
        journal={EAI Endorsed Transactions on AI and Robotics},
        volume={2},
        number={1},
        publisher={EAI},
        journal_a={AIRO},
        year={2023},
        month={7},
        keywords={Imbalanced Data, Dynamic Sampling, Deep Neural Network},
        doi={10.4108/airo.3486}
    }
    
  • Akram Sadat Mirshahzadeh
    Year: 2023
    Multi-class Classification of Imbalanced Intelligent Data using Deep Neural Network
    AIRO
    EAI
    DOI: 10.4108/airo.3486
Akram Sadat Mirshahzadeh1,*
  • 1: Islamic Azad University, Isfahan
*Contact email: research.iauai@gmail.com

Abstract

In recent years, studies in the field of deep learning have made significant progress. These studies have focused more on datasets with balanced classification, and less research has been done on imbalanced datasets, which are of great importance in the real world and present significant challenges for classification. This article studies the problem of classifying imbalanced data, introduces dynamic sampling for deep neural networks, investigates the imbalanced multiclass problem, and proposes a dynamic sampling method for deep learning. In our proposed method, all samples are fed to the current deep neural network for each training iteration, and the accuracy, precision, and mean error of the deep neural network are estimated. The proposed method dynamically selects informative data for training the deep neural network. Comprehensive experiments were conducted to evaluate and understand its strengths and weaknesses. The results of 13 imbalanced multiclass datasets show that the proposed method outperforms other methods, such as initial sampling techniques, active learning, cost-sensitive learning, and reinforcement learning.

Keywords
Imbalanced Data, Dynamic Sampling, Deep Neural Network
Received
2023-06-25
Accepted
2023-07-08
Published
2023-07-12
Publisher
EAI
http://dx.doi.org/10.4108/airo.3486

Copyright © 2023 Soleimani et al., licensed to EAI. This is an open access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/), which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL