3rd International ICST Workshop on Tools for solving Structured Markov Chains

Research Article

Analysis of an on-line algorithm for solving large Markov chains

  • @INPROCEEDINGS{10.4108/ICST.VALUETOOLS2008.4425,
        author={Nelly Litvak and Philippe Robert},
        title={Analysis of an on-line algorithm for solving large Markov chains},
        proceedings={3rd International ICST Workshop on Tools for solving Structured Markov Chains},
        publisher={ACM},
        proceedings_a={SMCTOOLS},
        year={2010},
        month={5},
        keywords={Convergence to equilibrium Directed graphs Scaled processes},
        doi={10.4108/ICST.VALUETOOLS2008.4425}
    }
    
  • Nelly Litvak
    Philippe Robert
    Year: 2010
    Analysis of an on-line algorithm for solving large Markov chains
    SMCTOOLS
    ICST
    DOI: 10.4108/ICST.VALUETOOLS2008.4425
Nelly Litvak1,*, Philippe Robert2,*
  • 1: University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
  • 2: INRIA Paris — Rocquencourt Domaine de Voluceau, 78153 Le Chesnay, France
*Contact email: N.Litvak@ewi.utwente.nl, Philippe.Robert@inria.fr

Abstract

Algorithms for ranking of web pages such as Google Page-Rank assign importance scores according to a stationary distribution of a Markov random walk on the web graph. Although in the classical search scheme the ranking scores are pre-computed off-line, several challenging problems in contemporary web search, such as personalized search and search in entity graphs, require on-line PageRank computation. In this work we present a probabilistic point of view for an original on-line algorithm proposed by Abiteboul, Preda and Cobena [1]. According to this algorithm, at the beginning, each page receives an equal amount of 'cash', and every time when a page is visited by a random walk, it distributes its cash among its outgoing links. The PageRank score of a page is then proportional to the amount of cash transferred from this page. In this paper, instead of dealing with the variable 'cash', which is continuous, we create a two-dimensional discrete 'cat and mouse' Markov chain such that the amount of cash on each page can be expressed via probabilities for this new Markov chain. We also indicate further research directions, such as the analysis of the cat and mouse chain in the case when the cat's movements are described by a classical stochastic process such as the M/M/1 random walk.