About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
1st International ICST Workshop on Cognitive Wireless Networks

Research Article

Optimizing for Sparse Training of Cognitive Radio Networks

Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.1145/1577382.1577387,
        author={Christian Doerr and Douglas C. Sicker and Dirk Grunwald},
        title={Optimizing for Sparse Training of Cognitive Radio Networks},
        proceedings={1st International ICST Workshop on Cognitive Wireless Networks},
        publisher={ACM},
        proceedings_a={CWNETS},
        year={2007},
        month={8},
        keywords={Fractional factorial designs cognitive radio network sparse efficient training},
        doi={10.1145/1577382.1577387}
    }
    
  • Christian Doerr
    Douglas C. Sicker
    Dirk Grunwald
    Year: 2007
    Optimizing for Sparse Training of Cognitive Radio Networks
    CWNETS
    ACM
    DOI: 10.1145/1577382.1577387
Christian Doerr1,*, Douglas C. Sicker1,*, Dirk Grunwald1,*
  • 1: Dept. of Computer Science, University of Colorado at Boulder Boulder, CO, USA
*Contact email: Christian.Doerr@colorado.edu, Douglas.Sicker@colorado.edu, Dirk.Grunwald@colorado.edu

Abstract

In order to find a configuration suitable to fulfill its needs, Cognitive Radios search the parameter configuration search space using one or more particular algorithms or heuristics. While each individual configuration tested uses a similar cost for evaluation (for example in airtime, computational cost for evaluation or power), many configurations will not yield any value to the radio and their exploration turns out to be a waste of resources. This paper introduces the application of fractional factorial designs to Cognitive Radios (CR), a technique to drastically prune the parameter search space while still yielding good results, thus enabling CRs to find the best possible configuration fast while using less resources for the search. We show that by using this technique CRs can evaluate a fraction of configurations while still correctly estimating the factors influencing its performance.

Keywords
Fractional factorial designs cognitive radio network sparse efficient training
Published
2007-08-17
Publisher
ACM
Modified
2011-09-22
http://dx.doi.org/10.1145/1577382.1577387
Copyright © 2007–2025 ACM
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL