Research Article
Automating Financial Surveillance
445 downloads
@INPROCEEDINGS{10.1007/978-3-642-12630-7_38, author={Maria Milosavljevic and Jean-Yves Delort and Ben Hachey and Bavani Arunasalam and Will Radford and James Curran}, title={Automating Financial Surveillance}, proceedings={Mining User-Generated Content for Security}, proceedings_a={MINUCS}, year={2012}, month={10}, keywords={Financial Surveillance Document Categorisation Machine Learning Sentiment Analysis}, doi={10.1007/978-3-642-12630-7_38} }
- Maria Milosavljevic
Jean-Yves Delort
Ben Hachey
Bavani Arunasalam
Will Radford
James Curran
Year: 2012
Automating Financial Surveillance
MINUCS
Springer
DOI: 10.1007/978-3-642-12630-7_38
Abstract
Financial surveillance technology alerts analysts to suspicious trading events. Our aim is to identify explainable false positives (e.g., caused by price-sensitive information in company news) and explainable true positives (e.g., caused by ramping in forums) by aligning these alerts with publicly available information. Our system aligns 99% of alerts, which will speed the analysts’ task by helping them to eliminate false positives and gather evidence for true positives more rapidly.
Copyright © 2009–2024 ICST