About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
Digital Forensics and Cyber Crime. First International ICST Conference, ICDF2C 2009, Albany, NY, USA, September 30-October 2, 2009, Revised Selected Papers

Research Article

Data Mining Instant Messaging Communications to Perform Author Identification for Cybercrime Investigations

Download(Requires a free EAI acccount)
578 downloads
Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.1007/978-3-642-11534-9_10,
        author={Angela Orebaugh and Dr. Allnutt},
        title={Data Mining Instant Messaging Communications to Perform Author Identification for Cybercrime Investigations},
        proceedings={Digital Forensics and Cyber Crime. First International ICST Conference, ICDF2C 2009, Albany, NY, USA, September 30-October 2, 2009, Revised Selected Papers},
        proceedings_a={ICDF2C},
        year={2012},
        month={5},
        keywords={Cybercrime investigations cyber forensics authorship analysis forensic data mining},
        doi={10.1007/978-3-642-11534-9_10}
    }
    
  • Angela Orebaugh
    Dr. Allnutt
    Year: 2012
    Data Mining Instant Messaging Communications to Perform Author Identification for Cybercrime Investigations
    ICDF2C
    Springer
    DOI: 10.1007/978-3-642-11534-9_10
Angela Orebaugh1,*, Dr. Allnutt1,*
  • 1: MS 1G5
*Contact email: angela@securityknox.com, jallnutt@ece.gmu.edu

Abstract

Instant messaging is a form of computer-mediated communication (CMC) with unique characteristics that reflect a realistic presentation of an author’s online stylistic characteristics. Instant messaging communications use virtual identities, which hinder social accountability and facilitate IM-related cybercrimes. Criminals often use virtual identities to hide their true identity and may also supply false information on their virtual identities. This paper presents an IM authorship analysis framework and feature set taxonomy for use in cyber forensics and cybercrime investigations. We explore authorship identification of IM messages to discover the parameters with the highest accuracy for determining the identity of a cyber criminal.

Keywords
Cybercrime investigations cyber forensics authorship analysis forensic data mining
Published
2012-05-28
http://dx.doi.org/10.1007/978-3-642-11534-9_10
Copyright © 2009–2025 ICST
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL