Research Article
Stability of Non-diagonalizable Networks: Eigenvalue Analysis
559 downloads
@INPROCEEDINGS{10.1007/978-3-642-02466-5_98, author={Linying Xiang and Zengqiang Chen and Jonathan Zhu}, title={Stability of Non-diagonalizable Networks: Eigenvalue Analysis}, proceedings={Complex Sciences. First International Conference, Complex 2009, Shanghai, China, February 23-25, 2009. Revised Papers, Part 1}, proceedings_a={COMPLEX PART 1}, year={2012}, month={5}, keywords={non-diagonalizable network pinning control stability eigenvalue analysis}, doi={10.1007/978-3-642-02466-5_98} }
- Linying Xiang
Zengqiang Chen
Jonathan Zhu
Year: 2012
Stability of Non-diagonalizable Networks: Eigenvalue Analysis
COMPLEX PART 1
Springer
DOI: 10.1007/978-3-642-02466-5_98
Abstract
The stability of non-diagonalizable networks of dynamical systems are investigated in detail based on eigenvalue analysis. Pinning control is suggested to stabilize the synchronization state of the whole coupled network. The complicated coupled problem is reduced to two independent problems: clarifying the stable region of the modified system and specifying the eigenvalue distribution of the coupling and control matrix. The dependence of the stability on both pinning density and pinning strength is studied.
Copyright © 2009–2024 ICST