Nano-Net. Third International ICST Conference, NanoNet 2008, Boston, MA, USA, September 14-16, 2008, Revised Selected Papers

Research Article

Hybrid DNA and Enzyme Based Computing for Address Encoding, Link Switching and Error Correction in Molecular Communication

Download
485 downloads
  • @INPROCEEDINGS{10.1007/978-3-642-02427-6_7,
        author={Frank Walsh and Sasitharan Balasubramaniam and Dmitri Botvich and Tatsuya Suda and Tadashi Nakano and Stephen Bush and M\^{\i}che\^{a}l Foghl\^{u}},
        title={Hybrid DNA and Enzyme Based Computing for Address Encoding, Link Switching and Error Correction in Molecular Communication},
        proceedings={Nano-Net. Third International ICST Conference, NanoNet 2008, Boston, MA, USA, September 14-16, 2008, Revised Selected Papers},
        proceedings_a={NANO-NET},
        year={2012},
        month={5},
        keywords={Molecular communication molecular computing communication protocols},
        doi={10.1007/978-3-642-02427-6_7}
    }
    
  • Frank Walsh
    Sasitharan Balasubramaniam
    Dmitri Botvich
    Tatsuya Suda
    Tadashi Nakano
    Stephen Bush
    Mícheál Foghlú
    Year: 2012
    Hybrid DNA and Enzyme Based Computing for Address Encoding, Link Switching and Error Correction in Molecular Communication
    NANO-NET
    Springer
    DOI: 10.1007/978-3-642-02427-6_7
Frank Walsh1,*, Sasitharan Balasubramaniam,*, Dmitri Botvich,*, Tatsuya Suda2,*, Tadashi Nakano2,*, Stephen Bush3,*, Mícheál Foghlú,*
  • 1: Waterford Institute of Technology Carriganore Campus
  • 2: University of California
  • 3: GE Global Research
*Contact email: fwwalsh@wit.ie, sasib@tssg.org, dbotvich@tssg.org, suda@ics.uci.edu, tnakano@ics.uci.edu, bushsf@research.ge.com, mofoghlu@tssg.org

Abstract

This paper proposes a biological cell-based communication protocol to enable communication between biological nanodevices. Inspired by existing communication network protocols, our solution combines two molecular computing techniques (DNA and enzyme computing), to design a protocol stack for molecular communication networks. Based on computational requirements of each layer of the stack, our solution specifies biomolecule address encoding/decoding, error correction and link switching mechanisms for molecular communication networks.