About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
Security and Privacy in Communication Networks. SecureComm 2017 International Workshops, ATCS and SePrIoT, Niagara Falls, ON, Canada, October 22–25, 2017, Proceedings

Research Article

Cyber Security Decision Support for Remediation in Automated Computer Network Defence

Download(Requires a free EAI acccount)
254 downloads
Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.1007/978-3-319-78816-6_15,
        author={Maxwell Dondo},
        title={Cyber Security Decision Support for Remediation in Automated Computer Network Defence},
        proceedings={Security and Privacy in Communication Networks. SecureComm 2017 International Workshops, ATCS and SePrIoT, Niagara Falls, ON, Canada, October 22--25, 2017, Proceedings},
        proceedings_a={SECURECOMM \& ATCS \& SEPRIOT},
        year={2018},
        month={4},
        keywords={Course of action Vulnerability Patching Attack graph Remediation Decision-making},
        doi={10.1007/978-3-319-78816-6_15}
    }
    
  • Maxwell Dondo
    Year: 2018
    Cyber Security Decision Support for Remediation in Automated Computer Network Defence
    SECURECOMM & ATCS & SEPRIOT
    Springer
    DOI: 10.1007/978-3-319-78816-6_15
Maxwell Dondo1,*
  • 1: Defence Research and Development Canada
*Contact email: maxwell.dondo@drdc-rddc.gc.ca

Abstract

In making important cyber security course of action (COA) decisions, experts mostly use their knowledge and experience to collate and synthesise information from multiple and sometimes conflicting sources such as the continually evolving cyber security tools. Such a decision making process is resource intensive and could result in inconsistencies from experts’ subjective interpretations of how to address the network’s security risks. The push towards automated computer network defence (CND) systems requires autonomous decision making and recommendation approaches for network security remediation. In this work, we present such a novel approach through a TOPSIS-based multi-attribute decision making COA selection technique. Our model uses a survey of experts to show that human experts’ decisions are indeed inconsistent, even when they are provided with the same information. We then present our decision making approach that is based on considering multiple COA selection factors in an operational environment and implementing a multi-objective selection method that provides network defenders with the best actionable COAs for an automated CND system. Our results show consistency that is unmatched by human experts.

Keywords
Course of action Vulnerability Patching Attack graph Remediation Decision-making
Published
2018-04-26
Appears in
SpringerLink
http://dx.doi.org/10.1007/978-3-319-78816-6_15
Copyright © 2017–2025 EAI
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL