About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
Machine Learning and Intelligent Communications. Second International Conference, MLICOM 2017, Weihai, China, August 5-6, 2017, Proceedings, Part II

Research Article

Direction of Arrive Estimation in Spherical Harmonic Domain Using Super Resolution Approach

Download(Requires a free EAI acccount)
184 downloads
Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.1007/978-3-319-73447-7_21,
        author={Jie Pan and Yalin Zhu and Changling Zhou},
        title={Direction of Arrive Estimation in Spherical Harmonic Domain Using Super Resolution Approach},
        proceedings={Machine Learning and Intelligent Communications. Second International Conference, MLICOM 2017, Weihai, China, August 5-6, 2017, Proceedings, Part II},
        proceedings_a={MLICOM},
        year={2018},
        month={2},
        keywords={DOA estimation Spherical harmonics Atomic norm},
        doi={10.1007/978-3-319-73447-7_21}
    }
    
  • Jie Pan
    Yalin Zhu
    Changling Zhou
    Year: 2018
    Direction of Arrive Estimation in Spherical Harmonic Domain Using Super Resolution Approach
    MLICOM
    Springer
    DOI: 10.1007/978-3-319-73447-7_21
Jie Pan1,*, Yalin Zhu1, Changling Zhou1
  • 1: Yangzhou University
*Contact email: panjie1982@nuaa.edu.cn

Abstract

Spherical array plays important role in 3D targets localization. In this paper, we develop a novel DOA estimation method for the spherical array with super resolution approach. The proposed method operates in spherical harmonic domain. Based on the atomic norm minimization, we develop a gridless L1-SVD algorithm in spherical harmonic domain and then we adopt the spherical ESPRIT method to two-dimensional DOA estimation. Compared to the previous work, the proposed method acquires better estimation performance. Numerical simulation results verify the performance of the proposed method.

Keywords
DOA estimation Spherical harmonics Atomic norm
Published
2018-02-09
Appears in
SpringerLink
http://dx.doi.org/10.1007/978-3-319-73447-7_21
Copyright © 2017–2025 EAI
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL