Research Article
An Improved Robust Low Cost Approach for Real Time Vehicle Positioning in a Smart City
266 downloads
@INPROCEEDINGS{10.1007/978-3-319-52569-3_7, author={Ikram Belhajem and Yann Ben Maissa and Ahmed Tamtaoui}, title={An Improved Robust Low Cost Approach for Real Time Vehicle Positioning in a Smart City}, proceedings={Industrial Networks and Intelligent Systems. Second International Conference, INISCOM 2016, Leicester, UK, October 31 -- November 1, 2016, Revised Selected Papers}, proceedings_a={INISCOM}, year={2017}, month={6}, keywords={Data fusion Extended kalman filter Global positioning system Intelligent transportation systems Smart cities Dead reckoning Low cost Neural networks Particle swarm optimization}, doi={10.1007/978-3-319-52569-3_7} }
- Ikram Belhajem
Yann Ben Maissa
Ahmed Tamtaoui
Year: 2017
An Improved Robust Low Cost Approach for Real Time Vehicle Positioning in a Smart City
INISCOM
Springer
DOI: 10.1007/978-3-319-52569-3_7
Abstract
The Global Positioning System (GPS) aided low cost Dead Reckoning (DR) system can provide without interruption the vehicle position for efficient fleet management solutions in smart cities. The Extended Kalman Filter (EKF) is generally applied for data fusion using the sensor’s measures and the GPS position as a helper.
Copyright © 2016–2024 ICST