About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
Smart Grid and Internet of Things. 8th EAI International Conference, SGIoT 2024, Taichung, Taiwan, November 23–24, 2024, Proceedings

Research Article

Energy-Efficient YOLO with Knowledge Distillation and Dynamic Energy Control for Edge Devices

Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.1007/978-3-031-93825-2_2,
        author={Anggi Andriyadi and Chandra Wijaya and Shih-Yen Chen and Ding-Hsiang Huang and Chao-Tung Yang},
        title={Energy-Efficient YOLO with Knowledge Distillation and Dynamic Energy Control for Edge Devices},
        proceedings={Smart Grid and Internet of Things. 8th EAI International Conference, SGIoT 2024, Taichung, Taiwan, November 23--24, 2024, Proceedings},
        proceedings_a={SGIOT},
        year={2025},
        month={7},
        keywords={YOLO Knowledge Distillation Dynamic Energy Control Edge AI},
        doi={10.1007/978-3-031-93825-2_2}
    }
    
  • Anggi Andriyadi
    Chandra Wijaya
    Shih-Yen Chen
    Ding-Hsiang Huang
    Chao-Tung Yang
    Year: 2025
    Energy-Efficient YOLO with Knowledge Distillation and Dynamic Energy Control for Edge Devices
    SGIOT
    Springer
    DOI: 10.1007/978-3-031-93825-2_2
Anggi Andriyadi1, Chandra Wijaya1, Shih-Yen Chen1, Ding-Hsiang Huang1, Chao-Tung Yang1,*
  • 1: Tunghai University
*Contact email: ctyang@thu.edu.tw

Abstract

This paper discusses the ongoing development of an energy-efficient YOLO-based fire detection system optimized for edge devices. Using Knowledge Distillation, we compress the YOLOv8m model into YOLOv8n, making it more suitable for deployment on energy-constrained edge devices while maintaining its accuracy. Additionally, we are designing a real-time dynamic energy control mechanism to manage energy usage during the inference process based on real-time power monitoring. Initial results demonstrate that the proposed method reduces model size and power consumption without compromising performance.

Keywords
YOLO Knowledge Distillation Dynamic Energy Control Edge AI
Published
2025-07-16
Appears in
SpringerLink
http://dx.doi.org/10.1007/978-3-031-93825-2_2
Copyright © 2024–2025 ICST
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL