About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
Future Access Enablers for Ubiquitous and Intelligent Infrastructures. 8th EAI International Conference, FABULOUS 2024, Zagreb, Croatia, May 9–10, 2024, Proceedings

Research Article

Classification of Wheat Species Using Convolutional Neural Networks: A Comparative Study

Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.1007/978-3-031-72393-3_1,
        author={Piotr A. Kowalski and Ernest Jeczmionek and Malgorzata Charytanowicz and Szymon Łukasik and Jerzy Niewczas and Piotr Kulczycki},
        title={Classification of Wheat Species Using Convolutional Neural Networks: A Comparative Study},
        proceedings={Future Access Enablers for Ubiquitous and Intelligent Infrastructures. 8th EAI International Conference, FABULOUS 2024, Zagreb, Croatia, May 9--10, 2024, Proceedings},
        proceedings_a={FABULOUS},
        year={2024},
        month={10},
        keywords={data set algorithm validation deep learning convolutional neural network prediction ability benchmark},
        doi={10.1007/978-3-031-72393-3_1}
    }
    
  • Piotr A. Kowalski
    Ernest Jeczmionek
    Malgorzata Charytanowicz
    Szymon Łukasik
    Jerzy Niewczas
    Piotr Kulczycki
    Year: 2024
    Classification of Wheat Species Using Convolutional Neural Networks: A Comparative Study
    FABULOUS
    Springer
    DOI: 10.1007/978-3-031-72393-3_1
Piotr A. Kowalski1,*, Ernest Jeczmionek2, Malgorzata Charytanowicz3, Szymon Łukasik1, Jerzy Niewczas4, Piotr Kulczycki1
  • 1: Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. A. Mickiewicza 30
  • 2: Doctoral School at AGH Krakow, al. A. Mickiewicza 30
  • 3: Polish Academy of Sciences, Systems Research Institute, ul. Newelska 6
  • 4: Department of Microstructure and Mechanics of Biomaterials, Institute of Agrophysics PAS, Doswiadczalna 4
*Contact email: pkowal@agh.edu.pl

Abstract

This paper introduces a novel image dataset tailored for evaluating machine learning solutions, particularly focusing on deep neural networks. Derived from X-ray images of wheat grains, the dataset encompasses three distinct species: Kama, Rosa, and Canadian. We provide a comprehensive overview of the dataset’s structure and conduct experiments using ten pretrained deep neural networks to classify wheat species. TheSeeds ImageData Set offers a competitive alternative to established object recognition benchmarks such as CIFAR-10, CIFAR-100, SVHN, and ImageNet. Its compact size streamlines computational processes, making it an efficient resource for exploratory data analysis. The dataset will be publicly available, serving as a foundational resource for future research endeavors in the field.

Keywords
data set algorithm validation deep learning convolutional neural network prediction ability benchmark
Published
2024-10-16
Appears in
SpringerLink
http://dx.doi.org/10.1007/978-3-031-72393-3_1
Copyright © 2024–2025 ICST
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL