About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
ArtsIT, Interactivity and Game Creation. Creative Heritage. New Perspectives from Media Arts and Artificial Intelligence. 10th EAI International Conference, ArtsIT 2021, Virtual Event, December 2-3, 2021, Proceedings

Research Article

Logo Generation Using Regional Features: A Faster R-CNN Approach to Generative Adversarial Networks

Download(Requires a free EAI acccount)
4 downloads
Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.1007/978-3-030-95531-1_30,
        author={Aram Ter-Sarkisov and Eduardo Alonso},
        title={Logo Generation Using Regional Features: A Faster R-CNN Approach to Generative Adversarial Networks},
        proceedings={ArtsIT, Interactivity and Game Creation. Creative Heritage. New Perspectives from Media Arts and Artificial Intelligence. 10th EAI International Conference, ArtsIT 2021, Virtual Event, December 2-3, 2021, Proceedings},
        proceedings_a={ARTSIT},
        year={2022},
        month={2},
        keywords={Deep learning Generative adversarial networks Logo generation.},
        doi={10.1007/978-3-030-95531-1_30}
    }
    
  • Aram Ter-Sarkisov
    Eduardo Alonso
    Year: 2022
    Logo Generation Using Regional Features: A Faster R-CNN Approach to Generative Adversarial Networks
    ARTSIT
    Springer
    DOI: 10.1007/978-3-030-95531-1_30
Aram Ter-Sarkisov1,*, Eduardo Alonso1
  • 1: CitAI Research Center, Department of Computer Science City
*Contact email: alex.ter-sarkisov@city.ac.uk

Abstract

In this paper we introduce Local Logo Generative Adversarial Network (LL-GAN) that uses regional features extracted from Faster R-CNN for logo generation. We demonstrate the strength of this approach by training the framework on a small style-rich dataset of real heavy metal logos to generate new ones. LL-GAN achieves Inception Score of 5.29 and Frechet Inception Distance of 223.94, improving on state-of-the-art models StyleGAN2 and Self-Attention GAN .

Keywords
Deep learning Generative adversarial networks Logo generation.
Published
2022-02-10
Appears in
SpringerLink
http://dx.doi.org/10.1007/978-3-030-95531-1_30
Copyright © 2021–2025 ICST
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL