About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
Innovations and Interdisciplinary Solutions for Underserved Areas. 4th EAI International Conference, InterSol 2020, Nairobi, Kenya, March 8-9, 2020, Proceedings

Research Article

Extraction of Relevant Data from Social Media Based on Termino-Ontological Resources:Application to Meningitis Surveillance via Twitter

Download(Requires a free EAI acccount)
4 downloads
Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.1007/978-3-030-51051-0_4,
        author={Wend-Panga R\^{e}gis C\^{e}dric Bere and Gaoussou Camara and Sadouanouan Malo and Sylvie Despres and Moussa Lo and Stanislas Ouaro},
        title={Extraction of Relevant Data from Social Media Based on Termino-Ontological Resources:Application to Meningitis Surveillance via Twitter},
        proceedings={Innovations and Interdisciplinary Solutions for Underserved Areas. 4th EAI International Conference, InterSol 2020, Nairobi, Kenya, March 8-9, 2020, Proceedings},
        proceedings_a={INTERSOL},
        year={2020},
        month={8},
        keywords={Ontology SKOS Resource Social media Epidemic intelligence Meningitis},
        doi={10.1007/978-3-030-51051-0_4}
    }
    
  • Wend-Panga Régis Cédric Bere
    Gaoussou Camara
    Sadouanouan Malo
    Sylvie Despres
    Moussa Lo
    Stanislas Ouaro
    Year: 2020
    Extraction of Relevant Data from Social Media Based on Termino-Ontological Resources:Application to Meningitis Surveillance via Twitter
    INTERSOL
    Springer
    DOI: 10.1007/978-3-030-51051-0_4
Wend-Panga Régis Cédric Bere1,*, Gaoussou Camara2, Sadouanouan Malo, Sylvie Despres3, Moussa Lo4, Stanislas Ouaro1
  • 1: LAMI
  • 2: EIR-IMTICE
  • 3: LIMICS
  • 4: LANI, Université Gaston Berger
*Contact email: cedric.bere@gmail.com

Abstract

In this paper, we present a process for collecting and filtering relevant data for epidemiological surveillance of meningitis. We focus on the African meningitis belt stretching from Senegal to Ethiopia. This study aims to fill the data gap for the early detection of epidemics based on the analysis of social media. Our approach is based on previous work that showed that social media analysis contributes significantly to the surveillance of epidemics. It uses IDOMEN (Infectious Disease Ontology for MENingitis) a meningitis domain ontology and a SKOS resource meningVocab (meningitis vocabulary). IDOMEN is an extension of the Infectious Disease Ontology (IDO). The SKOS resource meningVocab is built from a corpus of meningitis tweets from social media. We align the IDOMEN ontology and the SKOS resource meningVocab for collection and filtering tweets containing data relevant to meningitis in a perspective of epidemiological surveillance. Tweets are collected via the Twitter API on the basis of a list of terms related to meningitis. They are then annotated using these two resources and filtered using the rules of the domain (for example, the rules characterizing situations suggestive of bacterial meningitis:feverANDpurpuraANDheadache).

Keywords
Ontology SKOS Resource Social media Epidemic intelligence Meningitis
Published
2020-08-06
Appears in
SpringerLink
http://dx.doi.org/10.1007/978-3-030-51051-0_4
Copyright © 2020–2025 ICST
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL