About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
IoT as a Service. 5th EAI International Conference, IoTaaS 2019, Xi’an, China, November 16-17, 2019, Proceedings

Research Article

Accelerating -ary Sliding-Window Belief Propagation Algorithm with GPU

Download(Requires a free EAI acccount)
186 downloads
Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.1007/978-3-030-44751-9_1,
        author={Bowei Shan and Sihua Chen and Yong Fang},
        title={Accelerating -ary Sliding-Window Belief Propagation Algorithm with GPU},
        proceedings={IoT as a Service. 5th EAI International Conference, IoTaaS 2019, Xi’an, China, November 16-17, 2019, Proceedings},
        proceedings_a={IOTAAS},
        year={2020},
        month={6},
        keywords={SWBP LDPC GPU MATLAB},
        doi={10.1007/978-3-030-44751-9_1}
    }
    
  • Bowei Shan
    Sihua Chen
    Yong Fang
    Year: 2020
    Accelerating -ary Sliding-Window Belief Propagation Algorithm with GPU
    IOTAAS
    Springer
    DOI: 10.1007/978-3-030-44751-9_1
Bowei Shan1,*, Sihua Chen1,*, Yong Fang1,*
  • 1: Chang’an University
*Contact email: bwshan@chd.edu.cn, 1543275321@qq.com, fy@chd.edu.cn

Abstract

In this paper, we present a parallel Sliding-Window Belief Propagation algorithm to decode -ary Low-Density-Parity-Codes. The bottlenecks of sequential algorithm are carefully investigated. We use MATLAB platform to develop the parallel algorithm and run these bottlenecks simultaneously on thousands of threads of GPU. The experiment results show that our parallel algorithm achieves 2.3 to 30.3 speedup ratio than sequential algorithm.

Keywords
SWBP LDPC GPU MATLAB
Published
2020-06-05
Appears in
SpringerLink
http://dx.doi.org/10.1007/978-3-030-44751-9_1
Copyright © 2019–2025 ICST
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL