About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
Communications and Networking. 13th EAI International Conference, ChinaCom 2018, Chengdu, China, October 23-25, 2018, Proceedings

Research Article

Application Identification for Virtual Reality Video with Feature Analysis and Machine Learning Technique

Download(Requires a free EAI acccount)
243 downloads
Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.1007/978-3-030-06161-6_33,
        author={Xiaoyu Liu and Xinyu Chen and Yumei Wang and Yu Liu},
        title={Application Identification for Virtual Reality Video with Feature Analysis and Machine Learning Technique},
        proceedings={Communications and Networking. 13th EAI International Conference, ChinaCom 2018, Chengdu, China, October 23-25, 2018, Proceedings},
        proceedings_a={CHINACOM},
        year={2019},
        month={1},
        keywords={Application identification Statistical feature Machine learning VR video application},
        doi={10.1007/978-3-030-06161-6_33}
    }
    
  • Xiaoyu Liu
    Xinyu Chen
    Yumei Wang
    Yu Liu
    Year: 2019
    Application Identification for Virtual Reality Video with Feature Analysis and Machine Learning Technique
    CHINACOM
    Springer
    DOI: 10.1007/978-3-030-06161-6_33
Xiaoyu Liu1,*, Xinyu Chen1,*, Yumei Wang1,*, Yu Liu1,*
  • 1: Beijing University of Posts and Telecommunications
*Contact email: liuxiaoy@bupt.edu.cn, chenxinyu@bupt.edu.cn, ymwang@bupt.edu.cn, liuy@bupt.edu.cn

Abstract

Immersive media services such as Virtual Reality (VR) video have attracted more and more attention in recent years. They are applications that typically require large bandwidth, low latency, and low packet loss ratio. With limited network resources in wireless network, video application identification is crucial for optimized network resource allocation, Quality of Service (QoS) assurance, and security management. In this paper, we propose a set of statistical features that can be used to distinguish VR video from ordinary video. Six supervised machine learning (ML) algorithms are explored to verify the identification performance for VR video application using these features. Experimental results indicate that the proposed features combined with C4.5 Decision Tree algorithm can achieve an accuracy of 98.6% for VR video application identification. In addition, considering the requirement of real-time traffic identification, we further make two improvements to the statistical features and training set. One is the feature selection algorithm to improve the computational performance, and the other is the study of the overall accuracy in respect to training set size to obtain the minimum training set size.

Keywords
Application identification Statistical feature Machine learning VR video application
Published
2019-01-15
Appears in
SpringerLink
http://dx.doi.org/10.1007/978-3-030-06161-6_33
Copyright © 2018–2025 ICST
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL