About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
Cognitive Radio Oriented Wireless Networks. 13th EAI International Conference, CROWNCOM 2018, Ghent, Belgium, September 18–20, 2018, Proceedings

Research Article

Using Deep Learning and Radio Virtualisation for Efficient Spectrum Sharing Among Coexisting Networks

Download(Requires a free EAI acccount)
214 downloads
Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.1007/978-3-030-05490-8_16,
        author={Wei Liu and Joao Santos and Xianjun Jiao and Francisco Paisana and Luiz DaSilva and Ingrid Moerman},
        title={Using Deep Learning and Radio Virtualisation for Efficient Spectrum Sharing Among Coexisting Networks},
        proceedings={Cognitive Radio Oriented Wireless Networks. 13th EAI International Conference, CROWNCOM 2018, Ghent, Belgium, September 18--20, 2018, Proceedings},
        proceedings_a={CROWNCOM},
        year={2019},
        month={1},
        keywords={Machine learning Radio access technology classification Radio virtualisation Software-defined radio},
        doi={10.1007/978-3-030-05490-8_16}
    }
    
  • Wei Liu
    Joao Santos
    Xianjun Jiao
    Francisco Paisana
    Luiz DaSilva
    Ingrid Moerman
    Year: 2019
    Using Deep Learning and Radio Virtualisation for Efficient Spectrum Sharing Among Coexisting Networks
    CROWNCOM
    Springer
    DOI: 10.1007/978-3-030-05490-8_16
Wei Liu1,*, Joao Santos2,*, Xianjun Jiao1,*, Francisco Paisana2,*, Luiz DaSilva2,*, Ingrid Moerman1,*
  • 1: IDLab University Ghent - IMEC
  • 2: Trinity College Dublin - CONNECT Centre
*Contact email: wei.liu@ugent.be, facocalj@tcd.ie, xianjun.jiao@ugent.be, paisanaf@tcd.ie, dasilval@tcd.ie, ingrid.moerman@ugent.be

Abstract

This work leverages recent advances in machine learning for radio environment monitoring with context awareness, and uses the obtained information for creating radio slices that can optimally coexist with ongoing traffic in a given spectrum band. We instantiate radio slices as virtualised radios built on a software-defined radio platform. Then, we describe a proof-of-concept experiment that validates and demonstrates our proposed solution.

Keywords
Machine learning Radio access technology classification Radio virtualisation Software-defined radio
Published
2019-01-09
Appears in
SpringerLink
http://dx.doi.org/10.1007/978-3-030-05490-8_16
Copyright © 2018–2025 ICST
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL