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Abstract—this paper compares two supervised learning 

algorithms for predicting the sleep stages based on the human 

brain activity. The first step of the presented work regards feature 

extraction from real human electroencephalography (EEG) data 

together with its corresponding sleep stages that are utilized for 

training a support vector machine (SVM), and a fuzzy inference 

system (FIS) algorithm. Then, the trained algorithms are used to 

predict the sleep stages of real human patients. Extended 

comparison results are demonstrated which indicate that both 

classifiers could be utilized as a basis for an unobtrusive sleep 

quality assessment. 
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I.  INTRODUCTION  

The relevance of sleep abnormalities with chronic diseases 
and inflammatory conditions such as depression, heart disease, 
obesity, diabetes, stroke and arthritis has been already 
manifested in the literature [1-3]. Currently, there is a significant 
number of people suffering from sleep disorders, like insomnia, 
narcolepsy, sleep apnea, etc. The constantly increasing number 
of people facing sleep abnormalities intensifies the strong 
relation between sleep quality and quality of life [4-5]. 

Polysomnography test has been during the past years the 
dominant tool for sleep quality monitoring and assessment. 
However, this test requires specialized equipment and can be 
performed only within a certified lab. Thus, patients cannot 
repeat this test routinely and in their convenience (i.e. at their 
home environment). The appropriate, non–obtrusive way for 
assessing the sleep quality refers to subjective metrics and 
methods such as the Pittsburgh questionnaire (PSQI)[6]. 

Sleep is a dynamic phenomenon which is characterized by 
individual sleep stages. These sleep stages alter during person’s 
rest sessions and contribute towards his sleep cycle formation. 
The two main sleep stages are the Random Eye Movement stage 
(REM) and the non – REM stage (NREM). More precisely, 
NREM can be further distinguished in 4 stages. Stages 1 and 2 
are denoted as light sleep phase while stages 3 and 4 as deep 
sleep or slow waves phase. These stages and the related brain 
wave frequencies are presented in Table I. The transitions from 
stage to stage and the duration of each stage during a person’s 
sleep are the main markers for sleep quality assessment. 

According to literature quantitative analysis of sleep 
electroencephalography (EEG) data can provide valuable 
additional information in sleep research [7].These data 
recordings are considered a reliable method of assessing a 
person’s sleep stages. However, recent evolution in artificial 
intelligence has encouraged new efforts on the detection of sleep 
stages and finally the assessment of sleep quality through 
machine learning algorithms. Therefore, clinicians and 
researchers’ effort has nowadays been focused on analyzing and 
extracting enriched features that could feed classifiers, in order 
to produce efficient and accurate models for the identification of 
each person’s sleep cycle. 

TABLE I.  SLEEP STAGES AND BRAIN WAVES 

 

 

 

 

 

 

This paper is organized as follows. Section II demonstrates 
the related work and Section III analyzes the methodology 
employed in this study. The experimental results obtained by 
applying two different machine learning algorithms are 
presented in Section V while Section VI concludes the paper. 

II. RELATED WORK 

A performance comparison among popular classifiers for the 
detection of sleep stages is presented is presented in [8]. More 
precisely, SVM ensemble and Random forest has been tested on 
ten healthy subjects. In this study the random forest algorithm 
fed with spectral linear features has outperformed SVM. 

An artificial neural network approach reaching 76% 
performance of identifying stages 1,2,3,4, REM and wake is 
presented in [9]. The reformation of stages in three larger groups 
such as (wake), (stage 1, stage 2, REM), (stage 3 stage 4) 
increased the performance by 82%. 

The authors of [10] present another comparison of sleep 
stage classification by testing the performance of k – Nearest 

Stage Frequency 

(Hz) 

Brain Wave 

Awake 13-30 Beta 

1 8-13 Alpha  

2 4-13 Spindle and 

theta waves 

3 2-4 Spindle and  
Delta waves 

4 0.3-2 Delta waves 

REM 13-30  
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Neighbor (kNN), Quadratic Discrimminant Analysis and SVM. 
In these experiments the SVM achieved the most accurate 
classification by identifying correctly the 73.1% of the stages on 
healthy subjects and 76% on subject with obstructive apnea. 

Finally in [11] an SVM classifier is applied on the proposed 
features that derive from detrended fluctuation analysis on the 
ECG (MIT – BIH polysomnography database), achieving a 
classification rate of 80%.  

However the clinical golden standard so far has been the 
manual scoring from medical experts while the applications and 
devices that estimate sleep quality indices, based on actigraphy, 
have not been proven yet as reliable enough to produce accurate 
and significant outcomes. 

In the current work we present the main guidelines for a sleep 
stage prediction system used as a primary screening and 
unobtrusive tool for sleep quality assessment. For this purpose, 
we have compared two dominant machine learning algorithms, 
namely the support vector machines (SVM) and the fuzzy 
inference systems (FIS). Both of them present significant 
advantages and tradeoffs. While many prediction techniques 
have been reviewed side – by – side for the sleep stage 
classification problem, a straightforward comparison among FIS 
and SVM on the same basis has not been observed. A feasibility 
study concerning the reliable sleep stage assessment using these 
two algorithms is the main aim of the current study. 

III. METHODOLOGY 

A. Data 

The extraction of reliable and accurate models based on data 
mining and machine learning techniques requires numerous 
datasets. However, data mining and machine learning in the 
healthcare domain lacks of data availability. On that context 
public databases, that make available medical data, try to address 
this issue. For our study the MIT-BIH Posylomnographic 
Database [12] which is available from Physionet [13] has been 
employed. This database contains physiological signals that 
were recorded during the sleep session of 16 subjects. In total 
the database consists of 18 records with over 80 hours of 
polysomnographic recordings. The recorded signals are the 
electrocardiogram (ECG), EEG, Electroocculogram (EOG) and 
respiration rate. Since our effort focuses on the development of 
a non - obtrusive system, the usage of a single physiological 
signal was a demanding specification. Thus, the EEG signal was 
considered as the main signal that manifests the sleep activity. 
EEG records have been recorded with a sampling rate of 250Hz 
and have been annotated by medical experts every 7500 samples 
(30 seconds).  

B. Feature extraction 

The brain activity is captured in the EEG signals as voltage 
alterations that hardly exceed a threshold of 100μV. The low 
amplitudes of an EEG signal are prone to increased signal – to – 
noise ratio. EEG is highly affected by surrounding signals such 
as body movement, eye blinking, ECG and the power line 
inference. Therefore a preprocessing step is required for the 
extraction of these artifacts from the EEG. On the employed 
EEG signals a band pass filter with cutoff frequencies at 0.3Hz 
and 40Hz has been applied. 

In order to extract meaningful and semantic information 
from the EEG signal a further processing stage was conducted. 
This stage produced features that have been extracted from the 
frequency and the time domain. Since the sleep stages are 
strongly related with the brain waves (presented in Table I) the 
respective frequency bands and their power spectrum have been 
extracted with a 512 samples Hanning window and 50% overlap. 
Some further statistic calculations have been applied for the 
extraction of the frequency, with the higher power on each 
epoch, and the median frequency spectral power. 

Statistical and time domain analysis has been proven to 
extract useful characteristics that expose important patterns of 
the brain activity. Based on a thorough study of previous works 
[14], [15] we extracted the time domain features that has been 
proved to present the higher degree of correlation with sleep 
activity. This processing resulted in the extraction of the 
respective following features: 

 Hjorth Mobility & Complecity 

 Kurtosis & Skewness 

 Interquartile range 

 Maximum, minimum, mean and range 

 Variance standard deviation 

 Shannon Entropy 

 Zero Crossing Points (strongly related with presence of 
spindles) 

 Mean absolute and median absolute deviation 

Finally our datasets have been completed with the auto 
regressive filter coefficients extracted from the 6th order auto 
regression analysis of the signals. All the processing and feature 
extraction has been applied on non – overlapping EEG epochs 
of 30 seconds duration.  

C. Classification Strategy 

For the final sleep stage prediction, we have employed 
classification techniques from the machine learning domain, as 
it has been already mentioned. Especially we focused on a 
performance comparison between two well established and 
popular techniques of supervised learning, namely the SVM and 
the FIS.  

The cornerstone of every machine learning classification 
approach are the data that feed and train the classifiers. 
However, medical data present very low availability for the 
researchers. The datasets constructed from the MIT – BIH sleep 
database offer a sufficient quantity but the classes are not 
uniformly distributed so as to construct an ideal and unbiased 
dataset. In total, the dataset consisted of 10181 instances (each 
instance refer to on 30 seconds EEG epoch) with the following 
distribution of classes: 

TABLE II.  CLASSES DISTRIBUTION 

Groups Sleep Stages # Stages # Groups 

Wake Wake 3120 3120 

Light Sleep 

REM 700 

6397 Stage 1 1814 

Stage 2 3883 

Deep Sleep 
Stage 3 483 

664 
Stage 4 181 

Total:  10181 10181 



In order to overcome such problems that cause overfitting 
issues we used the k-fold Cross Validation technique for 
evaluating the classifiers. In k-fold cross validation the training 
set is randomly divided into K disjoint sets of equal size with 
similar class distribution in every set. Then the classifier is 
trained with the respective k-th training set while its 
performance is evaluated with the respective test set that was 
held out. Finally the estimated performance metric is the average 
of the values obtained from the k folds. A second approach we 
followed in order to increase as possible the number of instances 
from each class was to group them in three classes by joining the 
classes with common characteristics (clinical, qualitative and 
quantitative). For example Stage 3 and 4 both share the presence 
of dominant slow waves, while in stages 1 and 2 are occur theta 
waves. 

The classifiers’ performance have been evaluated from the 
study of the respective confusion matrices derived from the 
experiments along with the accuracy metric, defined as: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑_𝑟𝑒𝑐𝑜𝑟𝑑𝑠

𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑐𝑜𝑟𝑑𝑠
 . Further popular 

metrics used for the evaluation of the classification performance 
of multiclass classifiers are recall (rec) and precision (prec) 

defined as: 𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, 𝑝𝑟𝑒𝑐 =

𝑇𝑃

𝐹𝑃+𝑇𝑃
, where TP: True 

Positive, TN: True Negative and FP: False Positive (respective 
metrics for binary classification are sensitivity and 
specificity)[16]. 

1) FIS 
A fuzzy rule-based expert system contains fuzzy rules in its 

knowledge base and derives conclusions as outputs from the 
user inputs and the fuzzy reasoning process. All these features 
constitute a fuzzy inference system (FIS) [17]. 

In this study, the learning algorithm introduced in [17] was 
used in order to automatically derive the membership functions 
and the fuzzy IF/THEN rules from the real EEG data together 
with its corresponding sleep stages.  

In particular, initially the subtractive clustering algorithm 
[17] was utilized for separating the training EEG data together 
with its corresponding sleep stages into clusters. This algorithm 
does not involve any iterative nonlinear optimization, and 
therefore is robust and fast. The following value was defined for 

each training instance 
250

1
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 where  1,50s , a  is a 

positive constant (here 0.5a  ), and 
sL  denotes the 

multidimensional real numerical data of the s th training 

instance. Then, the procedure described in [5] has been utilized. 
The constructed FIS parameters are listed in Table II. 

2) SVM 
SVM algorithms have offered great impact on the 

evolvement and the application of machine learning in general. 
SVM consider the data points as vectors in a high dimensional 
space and tries to estimate the optimal hyperplane that separates 
the data in the respective classes. This properties describe SVM 
as a binary linear classifier. The linearity however can be 
overridden through the adoption of the kernel methods instead 
of vectors. Kernel methods maps the data points of the training 
sets to hyperplanes that may offer better separation among the 
classes of the data. 

SVM present high degree of generalization performance in 
many problems but they add also significant computational 
complexity during the training phase. This drawback has been 
partially addressed in [18] with the Sequential Minimal 
Optimization that we employ in our study along with the 

polynomial kernel 𝐾(𝑥, 𝑦) = (𝑥𝑇 + 𝑐)𝑑 where x and y are 
vectors of the feature space and c a constant and d a positive 
integer. 

IV. EXPERIMENTAL RESULTS 

As already described our evaluation strategy was based on 
the k – fold Cross Validation (k = 10) on a multiclass dataset 
with 3 classes (Wake), (S1, S2, REM) and (S4, S5). The 
classifiers were tested initially on the whole dataset with the 
10181 instances. The confusion matrix for the FIS and SVM 
classifiers are depicted on Table III and Table IV respectively. 

TABLE III.  FIS CONFUSION MATRIX WITH UNBALANCED DATASET 

Classified 

as: 

W (S1,S2,REM) (S3,S4) Total 

W 2160 940 20 3120 

(S1,S2,REM) 1076 5304 7 6397 

(S3,S4) 30 264 370 664 

Total 2980 6774 427 10181 

Performance 

Metrics 

rec=69% 

prec=72% 

rec=83% 

prec=78% 

rec=56% 

prec=87% 

Acc= 77% 

TABLE IV.  SVM CONFUSION MATRIX WITH UNBALANCED DATASET 

From this first round of experiments we observe that we get 
a classification accuracy of 82% for the SVM classifier while 
the FIS reaches the 74%. From a more thorough study of the two 
confusion matrices we observe how the unbalanced training 
dataset is highlighted on the classification stats for each class. 
The FIS identifies the (S1, S2, REM) class with 83% success 
rate while the SVM with 90% (respective recall metrics), 
exceeding both their average hit rate (accuracy). Significant poor 
performance is also observed in the identification of deep sleep 
stages. This is obviously attributed to the biased dataset, since 
the instances labeled as (S1, S2, and REM) and (S3, S4) are the 
62% and 6.5% respectively of all instances. 

Classified 

as: 

W (S1,S2,REM) (S3,S4) Total 

W 2147 966 7 3120 

(S1,S2,REM) 487 5775 135 6397 

(S3,S4) 7 233 424 664 

Total 2641 6974 566 10181 

Performance 

Metrics 

rec=69% 

prec=81% 

rec=90% 

prec=83% 

rec=64% 

prec=75% 

Acc=82% 

TABLE II.  PARAMETERS OF THE FIS.  

Parameter Value 
AND method Algebraic product  

OR method Probabilistic OR 

Implication method Algebraic product 

Aggregation method Max 

Type of membership 

functions 
Gaussian 

Fuzzy inference 

method 
Sugeno 

Defuzzifier Weighted average 
 

a.  



 The next experiments were conducted with balanced 
datasets in order to study how the distribution of classes in the 
training data affect the performance of the classifiers. The class 
containing the less instances is the deep sleep stage (S3, S4) 
which consists of 664 instances. In order to construct the 
balanced dataset we selected randomly 664 instances from the 
two other sets of instances labeled as (W) and (S1, S2, REM) 
respectively. The new dataset now consists of a total number of 
3*664 = 1992 instances. The tradeoff for building the balanced 
dataset is that now we utilize only the 20% of the available 
instances. The experiments have been repeated multiple times 
after selecting randomly 664 instances from the classes with a 
surplus of instances. The respective statistic results from the 
classification processes are presented on Table V and Table VI 
for FIS and SVM respectively. 

TABLE V.  FIS CONFUSION MATRIX WITH BALANCED DATASET 

Classified 

as: 

W (S1,S2,REM) (S3,S4) Total 

W 500 159 5 664 

(S1,S2,REM) 145 450 69 664 

(S3,S4) 11 80 573 664 

Total 632 682 678 1992 

Performance 

Metrics 

rec=75% 

prec=79% 

rec=68% 

prec=66% 

rec=86% 

prec=85% 

Acc=78% 

TABLE VI.  SVM CONFUSION MATRIX WITH UNBALANCED DATASET 

Classified 

as: 

W (S1,S2,REM) (S3,S4) Total 

W 541 118 5 664 

(S1,S2,REM) 80 515 69 664 

(S3,S4) 11 49 604 664 

Total 632 682 678 1992 

Performance 

Metrics 

rec=81% 

prec=86% 

rec=78% 

prec=76% 

rec=91% 

prec=89% 

Acc=83% 

None of the two classifiers present significant improvement 
on the measured accuracy after the completion of the second 
configuration of the experiments. However we observe as 
expected a more balanced performance on the identification on 
each particular class. Particularly now the deep sleep stage is 
identified with accuracy 86% and 91% for the FIS and SVM 
respectively. This can be attributed to the fact that sleep stages 3 
and 4 that form the deep sleep stage have characteristics that do 
not overlap with any of the other classes (i.e. the Delta waves). 
In contradiction the early sleep stage 1 which is assigned to the 
light sleep stage is harder to de identified from REM and wake. 

Both classifiers achieved satisfactory results but they present 
potentials for further improvement. This improvement could be 
achieved from the enhancement of the dataset with new features 
either from the dimensionality reduction of the dataset through 
sophisticated feature selection algorithms. The SVM achieved 
significant accuracy over 80% but the FIS gave us a 78% with 
less computational complexity. 

V. CONCLUSION 

In this paper, two well-known machine learning algorithms, 
namely SVM and the FIS, have been used for the prediction of 
the human sleep stages. These algorithms have been trained with 
real human EEG data together with corresponding sleep stages. 
The trained algorithms have been assessed in cases of predicting 
the sleep stages of real human patients. This assessment has 

shown that the SVM verified the expectations for better 
performance over the FIS, but both techniques can deliver 
sufficient accuracy. The quality of life for people suffering from 
chronic diseases and sleep disorders could be benefitted by tools 
that monitor and assess their sleep. 
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