
Space Searching Algorithms Used by Fungi
Elitsa Asenova

McGill University, Department of
Electrical & Computer Engineering

Montreal, Canada, H3A 0C3
elitsa.asenova@mail.mcgill.ca

Eileen Fu
McGill University, Department of

Electrical & Computer Engineering
Montreal, Canada, H3A 0C3

tian.s.fu@mail.mcgill.ca

Dan V. Nicolau Jr.
Queensland University of Technology

School of Mathematical Sciences
Queensland 4000 Australia

dan.nicolau@qut.edu.au

Hsin-Yu Lin
McGill University

Department of Bioengineering
Montreal, Quebec, Canada, H3A 0C3

hsin-yu.lin@mail.mcgill.ca

Dan V. Nicolau*
McGill University

Department of Bioengineering
Montreal, Quebec, Canada, H3A 0C3

dan.nicolau@mcgill.ca

ABSTRACT
Experimental studies have shown that fungi use a natural program
for searching the space available in micro-confined networks, e.g.,
mazes. This natural program, which comprises two subroutines,
i.e., collision-induced branching and directional memory, has
been shown to be efficient compared with the suppressing one, or
both subroutines. The present contribution compares the
performance of the fungal natural program against several
standard space searching algorithms. It was found that the fungal
natural algorithm consistently outperforms Depth-First-Search
(DFS) algorithm, and although it is inferior to informed
algorithms, such as A*, this under-performance does not increase
importantly with the increase of the size of the maze. These
findings encourage a systematic effort to harvest the natural space
searching algorithms used by microorganisms, which, if efficient,
can be reverse-engineered for graph and tree search strategies.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search – Graph and tree search strategies.

General Terms

Algorithms, Performance, Experimentation.

Keywords
Maze searching, natural algorithms, biomimetics, microfluidics.

1. INTRODUCTION
Biological entities have evolved highly efficient strategies for
space searching, which are essential to their survival1. In many
instances, non-human biological algorithms appear to be superior
to those used by humans2, which opens up the opportunity for
‘reverse engineering’ of those algorithms for practical
applications3. Presently, however, the bio-inspired algorithms are

just “inspired” by, rather than “reverse-engineered” from, natural
algorithms “developed” by biological entities.

Previously, it was observed4,5 that fungi behave very differently in
micro-confined spaces, and that they use specific programs for
searching space available for growth. While different species
present different variants of this fungal program, its framework is
common and it consists of the interplay of two ‘sub-routines’:
collision-induced branching, and directional memory. These
studies also demonstrated that the natural program comprising the
two ‘sub-routines’ is markedly superior to variants where one of
these is, or both are suppressed.

The present contribution aims to extend the analysis of the
efficiency of the natural space searching program used by fungi,
by benchmarking it against classical space searching algorithms.

2. METHODS
2.1 Fungal Space Search Algorithms
Previous works examined the growth of two species of
filamentous fungi, i.e., Pycnoporus cinnabarinus4 and Neurospora
crassa,5,6 inside a confined maze-like microfluidics structure
(Fig1). The fabrication of the mazes, described elsewhere,4
consisted of (i) patterning of a silicon mold using standard
photolithography, followed by deep reactive ion etching; (ii)
making a negative relief poly(dimethylsiloxane) (PDMS) stamp,
by casting and curing the degassed PDMS prepolymer and curing
agent mixture, (iii) rendering the hydrophobic PDMS surface
hydrophilic by plasma treatment; (iv) sealing the PDMS onto a
flat base glass layer. The enclosed structure had lateral openings,
allowing the introduction of inoculation and media.

2.1.1 Corner-induced Branching
The fungus grows until it reaches a wall. If the angle of attack is
shallow, the fungus will slide along the wall. However, if the tip
of the fungal hypha, i.e., the filamentous extension by which fungi
grow, reaches a corner, or a geometry that does not allow an exit,
e.g., due to directional memory (see further), then the hypha will
branch. Consequently, the fungus has two branching mechanisms:
a low frequency one, which is equivalent to the one used when
growing in open spaces; and a high frequency one, triggered by
the collision with difficult geometries, which occurs often in
confined spaces, e.g., mazes. The position of the branching is
species-specific, e.g., P cinnabarinus4 branches away from the
leading tip, N. crassa,5,6 branches at the leading tip.

BICT 2015, December 03-05, New York City, United States
Copyright © 2016 ICST
DOI 10.4108/eai.3-12-2015.2262591

Figure 1. Design of the networked microfluidics chip for the
‘harvesting’ of the fungal algorithms for space searching.

Figure 2. Space searching algorithms used by a fungus (here P.
cinnabarinus). Top left panel: Collision-induced branching.
The hyphae can slide along walls if the angle of attack is
shallow. When facing a corner, the hyphae will branch (red
arrow), unlike “no collision-induced branching” (top right
panel). Bottom right panel: Directional memory. The hyphae
slide along the walls, then redirect their growth in the same
direction they had initially (left scheme), unlike “no-
directional memory” (right). An image of the actual fungus
growing in a maze (bottom left panel) shows both the collision-
induced branching events (top arrow), and the overall
directional memory (bottom arrow).

2.1.2 Directional Memory
Each branch ‘remembers’ its initial direction of growth, and while
it has to negotiate various geometries, whenever the branch has
the opportunity to grow in the direction it had initially, it will
follow this with a high probability. Moreover, the branch will not
grow further if the available space opens in a direction which is
more than orthogonal with its initial direction, i.e., angles larger
than 90° are not allowed. If no alternative is available, the hypha
will stop growing and will often branch.

2.2 Bio-inspired Search Algorithms
2.2.1 Maze Generation
Since maze-solving can be generalized to graph searching, the test
mazes have been generated by a graph-based algorithm (Fig. 3).
Specifically, the graph was implemented in the form of a “w-by-
h” grid of cells, with w and h representing the width and height of
the maze. Each cell represents a square on the grid whereas the
black lines indicate the walls (Fig 3B). If each cell is the vertex of
a graph, then a cell may be connected to another cell if there are
no walls between them (Fig 3C). Each cell can have from 0 to 4
walls; 0 walls means the cell is a 4-way intersection, and 4 walls
means the cell is completely closed off.

The maze is initialized to be a 2D array of disconnected vertices,
visually represented as a rectangular grid. Two randomized
options are provided for maze generation, each following a
separate algorithm for removing walls in the grid, allowing for
two “styles” of mazes be created for testing and simulation. The
first algorithm implements a queue-based, Depth-First-Search
(DFS) methodology7, which is a first-in-first-out graph-searching
algorithm. Starting from the entrance cell, a random wall leading
to an adjacent cell is removed, and that cell is marked as “visited”.
The algorithm then proceeds to remove a random wall in the
newly- visited adjacent cell, and the next, until the user-supplied
exit point is found and all cells have been visited. This results in a
maze containing many long corridors, and few branches.

Figure 3. Evolution of the construction of a maze.

The second option implements Kruskal’s algorithm8. In this case,
the initial maze of closed cells can be seen as a grid of disjoint
sets, each containing only one vertex. A separate array containing
all the walls is also created. Then, at random, walls are chosen out
of this array; if the wall divides two cells that belong to separate
sets, the wall is removed and the two cells are joined into one set.
This is repeated until all cells belong in a single set. In contrast to
DFS, Kruskal’s algorithm results in a maze that branches
frequently in all directions, and contains few long paths.

2.2.2 Search Algorithm
The natural search routine (Bio-Inspired Algorithm, BIA) was
implemented in Java, using the two fungal sub-routines, i.e.,
collision-induced branching, and directional memory, with the
fundamentals described in section 2.1.

2.2.2.1 Corner-induced Branching
From an algorithm perspective, instead of using recursion or a
stack, cells were stored in a data structure that allows direct access,
in this case, an array. This way, when a dead end is reached, the
next cell to visit is determined algorithmically rather than using a
last-in-first-out method.

2.2.2.2 Directional Memory
Directional memory is easily implemented in Java by including
the starting angle of each branch object as a class constant, and
the current angle of the branch as a class variable. A simulated
fungal branch will travel at its starting angle as far as possible,
whenever possible, and only changes its current angle when no
paths are available in its starting direction.

3. RESULTS AND DISCUSSION
3.1 Space searching and solving mazes
Solving mazes is a difficult algorithmic exercise, which is why
mazes are used to estimate the optimality of the behavioral
response, or intelligence, of many higher organisms including ants,
bees, mice, rats, octopi, and humans,9 as well as artificial
intelligence-enabled robots.10

The efficiency of space searching algorithms depends greatly on
the geometry of the space and specifically confinement properties.
At one end of the scale, empty space without obstacles cannot be
explored any better than by using a diffusion, or diffusion-like
approach, e.g. a Levy flight. Depending on how the nutrients (or
other resources of interest) are distributed in such a space, it
appears generally that Levy flight processes are both what
biological systems use and what is actually mathematically
optimal.

At the other end of the scale, the space search problem in a maze,
a highly constrained geometry, reduces specifically to the problem
of graph connectedness. Because the maze is a graph, and it is
required for an exit to be found, this translates into asking a
computational system, e.g., a fungus, to find if the entry and exit
of the maze/graph are connected (and if so, how), or not. This
problem, of graph connectedness, is known to be in computational
class P and can be solved in a number of ways, but most
commonly this is done using "breadth-first search", first proposed
in the 1950s. Its time complexity is O(V+E) where V and E are
the number of edges and vertices, respectively. In general we
think of graphs (and mazes) as being specified by the number of
vertices and in the case of a graph were most vertices are locally
connected together, the time to establish the path from entry to
exit would be a fixed, low (say, 1-3) power of E.

3.2 Fungal ‘intelligence’
Microfluidics technology has allowed the miniaturization of maze
structures, which have been used to test the maze-solving ability
of both abiotic11 and biotic12 agents and to modulate and observe
the collective behavior of bacteria.13,14

An interesting aspect of the fungal search algorithms is that they
do not require nutrient-related clues regarding the geometry of the
environment. Previous studies have documented maze-solving by
placement of nutrients at the exits,12 or quorum-related
signaling,15 but the study of fungal space searching suppressed
nutrient gradients. In this context, the observed response is
consistent with the observation that natural fungal habitats are

nutritionally heterogeneous and require hyphae to efficiently
continue colony extension in the absence of chemotactic cues.

The ubiquity of fungi in microconfined mazelike habitats suggests
that they may be efficient solving agents of geometrical problems.
Although this ability has been assessed4 versus variants missing
one, or the other sub-routine, or both, the performance of the
overall fungal space search program versus standard path search
algorithms was not previously examined.

3.3 Assessing the Bio-Inspired Algorithm
To examine the Bio-Inspired Algorithm (BIA), we tested its
completeness, reachable state space and optimality under both
non-randomized and randomized mazes, generated by DFS
(which resulted in almost no dead ends), and by Kruskal’s
algorithm (leading to multiple dead ends), respectively.

3.3.1 Completeness
Starting from a root node (beginning of maze), this test aims to
find to what extent BIA finds the leaf node (end of maze). The
tests were run on different maze sizes and by placing the starting
and ending vertices at various positions. For the maze sizes up to
50x50, BIA solved every maze with different starting and ending
positions. Upon encountering a dead end, the algorithm goes back
to a previously branching point and resumes from there. While
this approach of the natural program appears not to be the best
solution, the algorithm will always find the exit on finite mazes.
In this regard, it must be noted that in many biological instances,
robustness of the behavior is more important than efficiency.

3.3.2 Reachable State Space
Mazes can serve as a background to state-space searching because
this is composed of an environment (the maze) that is divided into
equally sized units (states). For this test, we defined a start state
(beginning of the maze) and final state (end of maze) and counted
the number of covered nodes when the final state was reached. In
Fig. 4, it can be seen that when the maze size grows, the portion
of reachable state space remains constant (around 2/3 is explored).

Figure 4. Examples of the coverage of the mazes when
explored by BIA, for 20x20 (left), and 50x50 (right) mazes.

3.4 Comparison with Other Maze Solving
Algorithms
Noting that microorganisms, e.g., fungi, have complex, and
different from computer algorithms, ‘objective function,’ against
which they optimize their behavior, it is of critical importance for
“mathematical biomimetics”, i.e., study of natural algorithms in
the view of their reverse engineering, to benchmark these natural
algorithms against a standard one with similar scope.

3.4.1 Reachable State Space
This test was applied to examine the amount of memory necessary.
The quantification method for reachable state space was
mentioned in section 3.1.2. Because this is an uninformed search
(the search is the same regardless of the context), we observed
that BIA is less efficient than and an informed search, e.g., A*.16
However, BIA is consistently better than DFS, i.e. the covered
area while the final state was reached for BIA will be larger than
informed search but smaller than DFS. While the use of A*,
which as an informed search algorithm, may be ‘unfair’, this
conservative benchmarking is justified for a comprehensive
comparison. As shown by Fig. 5, DFS takes the most space when
performing maze search, while BIA is ~20% more efficient in
larger mazes (30x30 and up). A*, being an informed search, is, as
expected, much more efficient and therefore much more compact.

Also, it is important to note the different between randomized and
nonrandomized mazes. In the non-randomized maze, BIA and
DFS are more similar in performance due to the limited number of
dead ends (Fig 5A). With randomized mazes where they are
multiple dead ends, the difference between BIA and DFS is
visible even with smaller mazes (Fig 5B).

Figure 5. Reachable space, for (A, top) non-randomized, and
(B, bottom) randomized space, as a result of the exploration of
mazes with various sizes by BIA, DFS and A* algorithms,
respectively.

3.4.2 Running Time
The comparison of the performance of the natural (BIA)
algorithm with standard ones has been extended and deepened, by

benchmarking the experimental running time on a computer for
uninformed algorithms, i.e., BIA, and DFS, and for informed
maze search algorithms, i.e., Best First Search17, Jump Point
Search,18 and Dijkstra19. The tests have been run on a Dell
Inspiron i3. The mazes used for tests were non-randomized.

Fig 6 presents the computational performance of various maze-
solving algorithms. For large mazes, the execution time increases
significantly for uninformed algorithms, i.e., BIA and DFS. For
uninformed algorithms, DFS performs slightly better in smaller
maze size (up to 30x35). However, when the maze size keeps
growing, BIA performs much better than DFS.

Figure 6. Running time for various maze solving algorithms,
both uninformed (BIA, DFS) and informed (A*, Best First
Search, Jump Point Search, Dijkstra).
Again, a more ‘correct’ comparison, i.e., between the uninformed
algorithms DFS and BIA, demonstrates the robustness of the
natural algorithm (Fig 7). Interestingly, in smaller mazes (up to
30x30), DFS performs slightly better than BIA, but at mazes with
sizes larger than 40x40, BIA performs 20-40% better (tested until
70x70).

Figure 7. Running time for uninformed maze solving
algorithms, i.e., BIA and DFS for mazes of various sizes.

4. CONCLUSION
We compared the performance of the natural program for space
search used by fungi, as documented by previous experimental
studies, against several standard space searching algorithms, both
uninformed of the maze structure, i.e., Depth-First-Search (DFS)
algorithm, and informed algorithms, such as A*, Best First Search,
Jump Point Search and Dijkstra. It was found that the fungal
natural algorithm consistently outperforms the DFS algorithm,
and although it is inferior to informed algorithms, such as A*, this
under-performance does not increase importantly with the
increase of the size of the maze. These findings encourage a
systematic effort to harvest the natural space searching algorithms
used by microorganisms, which, if efficient, can be reverse-
engineered for graph and tree search strategies. Another direction

of research could be the optimization of the natural space
searching algorithm, e.g., via evolutionary computing.

5. ACKNOWLEDGMENTS
Financially supported by the European Union Seventh Framework
Programme (FP7/2007-2011) under grant agreement number
613044 (ABACUS); and Defense Advanced Research Projects
Agency (DARPA) under grant agreement N66001-03-1-8913.

6. REFERENCES
[1] Cho, H. et al. Self-organization in high-density bacterial

colonies: Efficient crowd control. PLoS Biology 5, 2614-
2623, doi:10.1371/journal.pbio.0050302 (2007).

[2] Helbing, D. Traffic and related self-driven many-particle
systems. Reviews of Modern Physics 73, 1067-1141,
doi:10.1103/RevModPhys.73.1067 (2001).

[3] Binitha S, S. S., S. A Survey of Bio inspired Optimization
Algorithms. International Journal of Soft Computing and
Engineering 2, 137-151 (2012).

[4] Hanson, K. L. et al. Fungi use efficient algorithms for the
exploration of microfluidic networks. Small 2, 1212-1220,
doi:10.1002/smll.200600105 (2006).

[5] Held, M., Edwards, C. & Nicolau, D. V. Probing the growth
dynamics of Neurospora crassa with microfluidic structures.
Fungal Biology 115, 493-505,
doi:10.1016/j.funbio.2011.02.003 (2011).

[6] Held, M., Lee, A. P., Edwards, C. & Nicolau, D. V.
Microfluidics structures for probing the dynamic behaviour
of filamentous fungi. Microelectronic Engineering 87, 786-
789, doi:10.1016/j.mee.2009.11.096 (2010).

[7] Korach, E. & Ostfeld, Z. Recognition of DFS trees:
sequential and parallel algorithms with refined verifications.
Discrete Mathematics 114, 305-327, doi:10.1016/0012-
365X(93)90375-4 (1993).

[8] Kruskal, J. B. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the
American Mathematical Society 7, 48–50 (1956).

.

[9] Wasserman, E. A. & Zentall, T. R. Comparative Cognition:
Experimental Explorations of Animal Intelligence. (2012).

[10] Nelson, A. L., Grant, E., Galeotti, J. M. & Rhody, S. Maze
exploration behaviors using an integrated evolutionary
robotics environment. Robotics and Autonomous Systems 46,
159-173, doi:10.1016/j.robot.2003.11.002 (2004).

[11] Fuerstman, M. J. et al. Solving mazes using microfluidic
networks. Langmuir 19, 4714-4722, doi:10.1021/la030054x
(2003).

[12] Nakagaki, T., Yamada, H. & Tóth, Á. Maze-solving by an
amoeboid organism. Nature 407, 470, doi:10.1038/35035159
(2000).

[13] Park, S. et al. Enhanced Caenorhabditis elegans locomotion
in a structured microfluidic environment. PLoS ONE 3,
doi:10.1371/journal.pone.0002550 (2008).

[14] Park, S. et al. Influence of topology on bacterial social
interaction. Proceedings of the National Academy of
Sciences of the United States of America 100, 13910-13915,
doi:10.1073/pnas.1935975100 (2003).

[15] Park, S. et al. Motion to form a quorum. Science 301, 188,
doi:10.1126/science.1079805 (2003).

[16] Hart, P. E., Nilsson, N. J. & Raphael, B. A Formal Basis for
the Heuristic Determination of Minimum Cost Paths. IEEE
Transactions on Systems Science and Cybernetics 4, 100-107,
doi:10.1109/TSSC.1968.300136 (1968).

[17] Pipe, A. G., Fogarty, T. C. & Winfield, A. in IEEE
Conference on Evolutionary Computation - Proceedings.
485-489.

[18] Harabor, D. & Grastien, A. in Proceedings International
Conference on Automated Planning and Scheduling,
ICAPS.January edn 128-135.

[19] Dijkstra, E. W. A note on two problems in connexion with
graphs. Numerische Mathematik 1, 269-271 (1959).

