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ABSTRACT 
Experimental studies have shown that fungi use a natural program 
for searching the space available in micro-confined networks, e.g., 
mazes. This natural program, which comprises two subroutines, 
i.e., collision-induced branching and directional memory, has 
been shown to be efficient compared with the suppressing one, or 
both subroutines. The present contribution compares the 
performance of the fungal natural program against several 
standard space searching algorithms. It was found that the fungal 
natural algorithm consistently outperforms Depth-First-Search 
(DFS) algorithm, and although it is inferior to informed 
algorithms, such as A*, this under-performance does not increase 
importantly with the increase of the size of the maze. These 
findings encourage a systematic effort to harvest the natural space 
searching algorithms used by microorganisms, which, if efficient, 
can be reverse-engineered for graph and tree search strategies. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – Graph and tree search strategies.  

General Terms 

Algorithms, Performance, Experimentation. 

Keywords 
Maze searching, natural algorithms, biomimetics, microfluidics. 

1. INTRODUCTION 
Biological entities have evolved highly efficient strategies for 
space searching, which are essential to their survival1. In many 
instances, non-human biological algorithms appear to be superior 
to those used by humans2, which opens up the opportunity for 
‘reverse engineering’ of those algorithms for practical 
applications3. Presently, however, the bio-inspired algorithms are 

just “inspired” by, rather than “reverse-engineered” from, natural 
algorithms “developed” by biological entities.  

Previously, it was observed4,5 that fungi behave very differently in 
micro-confined spaces, and that they use specific programs for 
searching space available for growth. While different species 
present different variants of this fungal program, its framework is 
common and it consists of the interplay of two ‘sub-routines’: 
collision-induced branching, and directional memory. These 
studies also demonstrated that the natural program comprising the 
two ‘sub-routines’ is markedly superior to variants where one of 
these is, or both are suppressed. 

The present contribution aims to extend the analysis of the 
efficiency of the natural space searching program used by fungi, 
by benchmarking it against classical space searching algorithms. 

2. METHODS 
2.1 Fungal Space Search Algorithms 
Previous works examined the growth of two species of 
filamentous fungi, i.e., Pycnoporus cinnabarinus4 and Neurospora 
crassa,5,6 inside a confined maze-like microfluidics structure 
(Fig1). The fabrication of the mazes, described elsewhere,4 
consisted of (i) patterning of a silicon mold using standard 
photolithography, followed by deep reactive ion etching; (ii) 
making a negative relief poly(dimethylsiloxane) (PDMS) stamp, 
by casting and curing the degassed PDMS prepolymer and curing 
agent mixture, (iii) rendering the hydrophobic PDMS surface 
hydrophilic by plasma treatment; (iv) sealing the PDMS onto a 
flat base glass layer. The enclosed structure had lateral openings, 
allowing the introduction of inoculation and media. 

2.1.1 Corner-induced Branching  
The fungus grows until it reaches a wall. If the angle of attack is 
shallow, the fungus will slide along the wall. However, if the tip 
of the fungal hypha, i.e., the filamentous extension by which fungi 
grow, reaches a corner, or a geometry that does not allow an exit, 
e.g., due to directional memory (see further), then the hypha will 
branch. Consequently, the fungus has two branching mechanisms: 
a low frequency one, which is equivalent to the one used when 
growing in open spaces; and a high frequency one, triggered by 
the collision with difficult geometries, which occurs often in 
confined spaces, e.g., mazes. The position of the branching is 
species-specific, e.g., P cinnabarinus4 branches away from the 
leading tip, N. crassa,5,6 branches at the leading tip. 
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Figure 1. Design of the networked microfluidics chip for the 
‘harvesting’ of the fungal algorithms for space searching. 

 
Figure 2. Space searching algorithms used by a fungus (here P. 
cinnabarinus). Top left panel: Collision-induced branching. 
The hyphae can slide along walls if the angle of attack is 
shallow. When facing a corner, the hyphae will branch (red 
arrow), unlike “no collision-induced branching” (top right 
panel). Bottom right panel: Directional memory. The hyphae 
slide along the walls, then redirect their growth in the same 
direction they had initially (left scheme), unlike “no-
directional memory” (right). An image of the actual fungus 
growing in a maze (bottom left panel) shows both the collision-
induced branching events (top arrow), and the overall 
directional memory (bottom arrow). 

2.1.2 Directional Memory 
Each branch ‘remembers’ its initial direction of growth, and while 
it has to negotiate various geometries, whenever the branch has 
the opportunity to grow in the direction it had initially, it will 
follow this with a high probability. Moreover, the branch will not 
grow further if the available space opens in a direction which is 
more than orthogonal with its initial direction, i.e., angles larger 
than 90° are not allowed. If no alternative is available, the hypha 
will stop growing and will often branch. 

2.2 Bio-inspired Search Algorithms 
2.2.1 Maze Generation 
Since maze-solving can be generalized to graph searching, the test 
mazes have been generated by a graph-based algorithm (Fig. 3). 
Specifically, the graph was implemented in the form of a “w-by-
h” grid of cells, with w and h representing the width and height of 
the maze. Each cell represents a square on the grid whereas the 
black lines indicate the walls (Fig 3B). If each cell is the vertex of 
a graph, then a cell may be connected to another cell if there are 
no walls between them (Fig 3C). Each cell can have from 0 to 4 
walls; 0 walls means the cell is a 4-way intersection, and 4 walls 
means the cell is completely closed off. 

The maze is initialized to be a 2D array of disconnected vertices, 
visually represented as a rectangular grid. Two randomized 
options are provided for maze generation, each following a 
separate algorithm for removing walls in the grid, allowing for 
two “styles” of mazes be created for testing and simulation. The 
first algorithm implements a queue-based, Depth-First-Search 
(DFS) methodology7, which is a first-in-first-out graph-searching 
algorithm. Starting from the entrance cell, a random wall leading 
to an adjacent cell is removed, and that cell is marked as “visited”. 
The algorithm then proceeds to remove a random wall in the 
newly- visited adjacent cell, and the next, until the user-supplied 
exit point is found and all cells have been visited. This results in a 
maze containing many long corridors, and few branches. 

Figure 3. Evolution of the construction of a maze.  

The second option implements Kruskal’s algorithm8. In this case, 
the initial maze of closed cells can be seen as a grid of disjoint 
sets, each containing only one vertex. A separate array containing 
all the walls is also created. Then, at random, walls are chosen out 
of this array; if the wall divides two cells that belong to separate 
sets, the wall is removed and the two cells are joined into one set. 
This is repeated until all cells belong in a single set. In contrast to 
DFS, Kruskal’s algorithm results in a maze that branches 
frequently in all directions, and contains few long paths. 

2.2.2 Search Algorithm 
The natural search routine (Bio-Inspired Algorithm, BIA) was 
implemented in Java, using the two fungal sub-routines, i.e., 
collision-induced branching, and directional memory, with the 
fundamentals described in section 2.1.  



2.2.2.1 Corner-induced Branching 
From an algorithm perspective, instead of using recursion or a 
stack, cells were stored in a data structure that allows direct access, 
in this case, an array. This way, when a dead end is reached, the 
next cell to visit is determined algorithmically rather than using a 
last-in-first-out method. 

2.2.2.2 Directional Memory 
Directional memory is easily implemented in Java by including 
the starting angle of each branch object as a class constant, and 
the current angle of the branch as a class variable. A simulated 
fungal branch will travel at its starting angle as far as possible, 
whenever possible, and only changes its current angle when no 
paths are available in its starting direction. 

3. RESULTS AND DISCUSSION 
3.1 Space searching and solving mazes 
Solving mazes is a difficult algorithmic exercise, which is why 
mazes are used to estimate the optimality of the behavioral 
response, or intelligence, of many higher organisms including ants, 
bees, mice, rats, octopi, and humans,9 as well as artificial 
intelligence-enabled robots.10  

The efficiency of space searching algorithms depends greatly on 
the geometry of the space and specifically confinement properties. 
At one end of the scale, empty space without obstacles cannot be 
explored any better than by using a diffusion, or diffusion-like 
approach, e.g. a Levy flight. Depending on how the nutrients (or 
other resources of interest) are distributed in such a space, it 
appears generally that Levy flight processes are both what 
biological systems use and what is actually mathematically 
optimal.  

At the other end of the scale, the space search problem in a maze, 
a highly constrained geometry, reduces specifically to the problem 
of graph connectedness. Because the maze is a graph, and it is 
required for an exit to be found, this translates into asking a 
computational system, e.g., a fungus, to find if the entry and exit 
of the maze/graph are connected (and if so, how), or not. This 
problem, of graph connectedness, is known to be in computational 
class P and can be solved in a number of ways, but most 
commonly this is done using "breadth-first search", first proposed 
in the 1950s. Its time complexity is O(V+E) where V and E are 
the number of edges and vertices, respectively. In general we 
think of graphs (and mazes) as being specified by the number of 
vertices and in the case of a graph were most vertices are locally 
connected together, the time to establish the path from entry to 
exit would be a fixed, low (say, 1-3) power of E. 

3.2 Fungal ‘intelligence’ 
Microfluidics technology has allowed the miniaturization of maze 
structures, which have been used to test the maze-solving ability 
of both abiotic11 and biotic12 agents and to modulate and observe 
the collective behavior of bacteria.13,14 

An interesting aspect of the fungal search algorithms is that they 
do not require nutrient-related clues regarding the geometry of the 
environment. Previous studies have documented maze-solving by 
placement of nutrients at the exits,12 or quorum-related 
signaling,15 but the study of fungal space searching suppressed 
nutrient gradients. In this context, the observed response is 
consistent with the observation that natural fungal habitats are 

nutritionally heterogeneous and require hyphae to efficiently 
continue colony extension in the absence of chemotactic cues. 

The ubiquity of fungi in microconfined mazelike habitats suggests 
that they may be efficient solving agents of geometrical problems. 
Although this ability has been assessed4 versus variants missing 
one, or the other sub-routine, or both, the performance of the 
overall fungal space search program versus standard path search 
algorithms was not previously examined. 

3.3 Assessing the Bio-Inspired Algorithm 
To examine the Bio-Inspired Algorithm (BIA), we tested its 
completeness, reachable state space and optimality under both 
non-randomized and randomized mazes, generated by DFS 
(which resulted in almost no dead ends), and by Kruskal’s 
algorithm (leading to multiple dead ends), respectively.  

3.3.1 Completeness 
Starting from a root node (beginning of maze), this test aims to 
find to what extent BIA finds the leaf node (end of maze). The 
tests were run on different maze sizes and by placing the starting 
and ending vertices at various positions. For the maze sizes up to 
50x50, BIA solved every maze with different starting and ending 
positions. Upon encountering a dead end, the algorithm goes back 
to a previously branching point and resumes from there. While 
this approach of the natural program appears not to be the best 
solution, the algorithm will always find the exit on finite mazes. 
In this regard, it must be noted that in many biological instances, 
robustness of the behavior is more important than efficiency. 

3.3.2 Reachable State Space 
Mazes can serve as a background to state-space searching because 
this is composed of an environment (the maze) that is divided into 
equally sized units (states). For this test, we defined a start state 
(beginning of the maze) and final state (end of maze) and counted 
the number of covered nodes when the final state was reached. In 
Fig. 4, it can be seen that when the maze size grows, the portion 
of reachable state space remains constant (around 2/3 is explored).  

Figure 4. Examples of the coverage of the mazes when 
explored by BIA, for 20x20 (left), and 50x50 (right) mazes. 

3.4 Comparison with Other Maze Solving 
Algorithms 
Noting that microorganisms, e.g., fungi, have complex, and 
different from computer algorithms, ‘objective function,’ against 
which they optimize their behavior, it is of critical importance for 
“mathematical biomimetics”, i.e., study of natural algorithms in 
the view of their reverse engineering, to benchmark these natural 
algorithms against a standard one with similar scope. 



3.4.1 Reachable State Space 
This test was applied to examine the amount of memory necessary. 
The quantification method for reachable state space was 
mentioned in section 3.1.2. Because this is an uninformed search 
(the search is the same regardless of the context), we observed 
that BIA is less efficient than and an informed search, e.g., A*.16 
However, BIA is consistently better than DFS, i.e. the covered 
area while the final state was reached for BIA will be larger than 
informed search but smaller than DFS. While the use of A*, 
which as an informed search algorithm, may be ‘unfair’, this 
conservative benchmarking is justified for a comprehensive 
comparison. As shown by Fig. 5, DFS takes the most space when 
performing maze search, while BIA is ~20% more efficient in 
larger mazes (30x30 and up). A*, being an informed search, is, as 
expected, much more efficient and therefore much more compact. 

Also, it is important to note the different between randomized and 
nonrandomized mazes. In the non-randomized maze, BIA and 
DFS are more similar in performance due to the limited number of 
dead ends (Fig 5A). With randomized mazes where they are 
multiple dead ends, the difference between BIA and DFS is 
visible even with smaller mazes (Fig 5B). 

Figure 5. Reachable space, for (A, top) non-randomized, and 
(B, bottom) randomized space, as a result of the exploration of 
mazes with various sizes by BIA, DFS and A* algorithms, 
respectively. 

3.4.2 Running Time 
The comparison of the performance of the natural (BIA) 
algorithm with standard ones has been extended and deepened, by 

benchmarking the experimental running time on a computer for 
uninformed algorithms, i.e., BIA, and DFS, and for informed 
maze search algorithms, i.e., Best First Search17, Jump Point 
Search,18 and Dijkstra19. The tests have been run on a Dell 
Inspiron i3. The mazes used for tests were non-randomized. 

Fig 6 presents the computational performance of various maze-
solving algorithms. For large mazes, the execution time increases 
significantly for uninformed algorithms, i.e., BIA and DFS. For 
uninformed algorithms, DFS performs slightly better in smaller 
maze size (up to 30x35). However, when the maze size keeps 
growing, BIA performs much better than DFS.  

Figure 6. Running time for various maze solving algorithms, 
both uninformed (BIA, DFS) and informed (A*, Best First 
Search, Jump Point Search, Dijkstra). 
Again, a more ‘correct’ comparison, i.e., between the uninformed 
algorithms DFS and BIA, demonstrates the robustness of the 
natural algorithm (Fig 7). Interestingly, in smaller mazes (up to 
30x30), DFS performs slightly better than BIA, but at mazes with 
sizes larger than 40x40, BIA performs 20-40% better (tested until 
70x70). 

Figure 7. Running time for uninformed maze solving 
algorithms, i.e., BIA and DFS for mazes of various sizes. 

4. CONCLUSION 
We compared the performance of the natural program for space 
search used by fungi, as documented by previous experimental 
studies, against several standard space searching algorithms, both 
uninformed of the maze structure, i.e., Depth-First-Search (DFS) 
algorithm, and informed algorithms, such as A*, Best First Search, 
Jump Point Search and Dijkstra. It was found that the fungal 
natural algorithm consistently outperforms the DFS algorithm, 
and although it is inferior to informed algorithms, such as A*, this 
under-performance does not increase importantly with the 
increase of the size of the maze. These findings encourage a 
systematic effort to harvest the natural space searching algorithms 
used by microorganisms, which, if efficient, can be reverse-
engineered for graph and tree search strategies. Another direction 



of research could be the optimization of the natural space 
searching algorithm, e.g., via evolutionary computing. 
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